1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
#include "caffe2/predictor/transforms.h"
#include "caffe2/onnx/onnx_exporter.h"
#include "caffe2/utils/proto_utils.h"
#include <unordered_set>
namespace caffe2 {
namespace {
bool HasInput(const string& blob, const OperatorDef& op) {
for (const auto& in : op.input()) {
if (blob == in) {
return true;
}
}
return false;
}
bool HasOutput(const string& blob, const OperatorDef& op) {
for (const auto& out : op.output()) {
if (blob == out) {
return true;
}
}
return false;
}
void RewriteSubnetsForIfOp(
const string& from,
const string& to,
OperatorDef* op) {
ArgumentHelper helper(*op);
Argument *then_arg = nullptr, *else_arg = nullptr;
std::map<std::string, std::string> oldname_to_newname;
oldname_to_newname[from] = to;
if (helper.HasSingleArgumentOfType<NetDef>("then_net")) {
then_arg = GetMutableArgument("then_net", false, op);
onnx::rewriteSubnet(then_arg, oldname_to_newname);
}
if (helper.HasSingleArgumentOfType<NetDef>("else_net")) {
else_arg = GetMutableArgument("else_net", false, op);
onnx::rewriteSubnet(else_arg, oldname_to_newname);
}
}
void RenameInputs(
const string& from,
const string& to,
OperatorDef* def,
int op_idx,
std::unordered_map<std::string, std::unordered_set<int>>& children) {
VLOG(2) << "RenameInputs (from=" << from << ", to=" << to << ", "
<< def->DebugString() << ")";
for (int i = 0; i < def->input_size(); i++) {
if (def->input(i) == from) {
*def->mutable_input(i) = to;
children[from].erase(op_idx);
children[to].insert(op_idx);
}
}
// Rename inputs in the subnets of If/AsyncIf op
if (def->type() == "If" || def->type() == "AsyncIf") {
RewriteSubnetsForIfOp(from, to, def);
}
}
void RenameOutputs(
const string& from,
const string& to,
OperatorDef* def,
int op_idx,
std::unordered_map<std::string, std::unordered_set<int>>& parents) {
VLOG(2) << "RenameOutputs (from=" << from << ", to=" << to << ", "
<< def->DebugString() << ")";
for (string& output : *def->mutable_output()) {
if (output == from) {
output = to;
parents[from].erase(op_idx);
parents[to].insert(op_idx);
}
}
// Rename outputs in the subnets of If/AsyncIf op
if (def->type() == "If" || def->type() == "AsyncIf") {
RewriteSubnetsForIfOp(from, to, def);
}
}
void RenameInputsInChildren(
const string& from,
const string& to,
caffe2::NetDef* net,
std::unordered_map<std::string, std::unordered_set<int>>& children) {
VLOG(2) << "RenameInputsInChildren (from=" << from << ", to=" << to << ")";
if (children.count(from) == 0) {
return;
}
// make an temporary copy here because we're going to modify children
for (int child : std::unordered_set<int>(children[from])) {
RenameInputs(from, to, net->mutable_op(child), child, children);
}
}
void RenameOutputInParents(
const std::string& from,
const std::string& to,
caffe2::NetDef* net,
std::unordered_map<std::string, std::unordered_set<int>>& parents) {
VLOG(2) << "RenameOutputInParents (from=" << from << ", to=" << to << ")";
if (parents.count(from) == 0) {
return;
}
// make an temporary copy here because we're going to modify parents
for (int parent : std::unordered_set<int>(parents[from])) {
RenameOutputs(from, to, net->mutable_op(parent), parent, parents);
}
}
bool FoundOpCandidate(
const OperatorDef* op,
int op_idx,
const std::string& op_type,
const std::unordered_set<std::string>& inputs,
const std::unordered_set<std::string>& outputs,
const std::unordered_map<std::string, std::unordered_set<int>>& parents,
const std::unordered_map<std::string, std::unordered_set<int>>& children) {
if (op->type() != op_type) {
VLOG(2) << "InplaceOps(" << op_type << ") skipping op: \n"
<< op->DebugString();
return false;
}
if (op->input_size() != 1 || op->output_size() != 1) {
VLOG(2) << "InplaceOps(" << op_type
<< ") only supports ops with exactly 1 output "
<< "and exactly 1 input. Skipping op: \n"
<< op->DebugString();
return false;
}
// use actual copy because op->input/output may change
const std::string in = op->input(0);
const std::string out = op->output(0);
if (in == out) {
// This case can still exist when in/out is in the predict_net's outputs.
// The op is an inplace op already.
return false;
}
// The following is to handle the special cases of inputs being overwritten
// by ops in the net and then appear in outputs of the net
if (outputs.count(out) == 0) {
// Propagate input downwards
// Make sure that after input is propagated down, it doesn't have parents
// that comes after i but before the new child
int earliest_child = INT_MAX;
const auto& iter = children.find(out);
if (iter != children.end()) {
for (int child : iter->second) {
earliest_child = std::min(earliest_child, child);
}
}
if (earliest_child == INT_MAX) {
return true;
}
const auto& iter2 = parents.find(in);
if (iter2 != parents.end()) {
for (int parent : iter2->second) {
if (parent > op_idx && parent < earliest_child) {
VLOG(2) << "InplaceOps(" << op_type << ") skipping op: \n"
<< op->DebugString();
return false;
}
}
}
} else {
// Propagate output upwards
if (inputs.count(in) != 0 || outputs.count(in) != 0) {
// This is the case when the op is absolutely needed. It exists to serve
// one and only one purpose, to copy from in to out where in is one of
// the net's inputs or outputs and out is one of the net's outputs.
VLOG(2) << "InplaceOps(" << op_type << ") skipping op: \n"
<< op->DebugString();
return false;
}
// find latest parent of in
int latest_parent = -1;
const auto& iter = parents.find(in);
if (iter != parents.end()) {
for (int parent : iter->second) {
latest_parent = std::max(latest_parent, parent);
}
}
if (latest_parent == -1) {
return false;
}
// Make sure that after output is propagated, it doesn't have children that
// comes after its new parent, but before its previous parent
const auto& iter2 = children.find(out);
if (iter2 != children.end()) {
for (int child : iter2->second) {
if (child < op_idx && child > latest_parent) {
VLOG(2) << "InplaceOps(" << op_type << ") skipping op: \n"
<< op->DebugString();
return false;
}
}
}
}
return true;
}
} // namespace
// Conceptually it's a pretty easy process and consists of 3 steps:
// 1) SSA rewrite; 2) propagate inputs forwards; 3) propagate outputs
// backwards and then forwards again. However, because of model outputs
// which can't be overwritten during the SSA process, and the fact that
// inputs could be overwritten by ops and also appear in outputs, it adds
// a lot of extra complexity to handle these special cases. A lot of this
// extra complexity is handled in FoundOpCandidate.
void RemoveOpsByType(InferenceGraph& graph, const std::string& op_type) {
int num_removed = 0;
NetDef* net = graph.predict_net_def.get();
for (auto& op : net->op()) {
if (op.type() == "RecurrentNetwork") {
LOG(INFO) << "RemoveOpsByType does not support RecurrentNetwork yet";
return;
}
}
std::unordered_set<std::string> inputs(
graph.input_names.begin(), graph.input_names.end());
std::unordered_set<std::string> outputs(
graph.output_names.begin(), graph.output_names.end());
if (!graph.predictor_net_ssa_rewritten) {
net->mutable_external_output()->Clear();
// add external_outputs to net as they're necessary to correctly do ssa
// rewriting
for (const auto& o : graph.output_names) {
net->add_external_output(o);
}
onnx::SsaRewrite(nullptr, net);
// clear external_outputs
net->mutable_external_output()->Clear();
graph.predictor_net_ssa_rewritten = true;
}
// construct parents/children graphs to facilitate graph traversal
std::unordered_map<std::string, std::unordered_set<int>> parents, children;
for (int i = 0; i < net->op_size(); i++) {
OperatorDef* op = net->mutable_op(i);
for (auto& in : op->input()) {
children[in].insert(i);
}
for (auto& output : op->output()) {
parents[output].insert(i);
}
}
// Inplace ops. Step 1: propagate inputs downward
for (int i = 0; i < net->op_size(); i++) {
OperatorDef* op = net->mutable_op(i);
if (!FoundOpCandidate(op, i, op_type, inputs, outputs, parents, children)) {
continue;
}
const std::string in = op->input(0);
const std::string out = op->output(0);
if (outputs.count(out) == 0) {
// Rename all apperances of out to in
VLOG(2) << "InplaceOps(" << op_type << ") inplacing op:\n"
<< op->DebugString();
RenameInputsInChildren(out, in, net, children);
RenameOutputs(out, in, op, i, parents);
}
}
// Step 2: propagate outputs upward
for (int i = 0; i < net->op_size(); i++) {
OperatorDef* op = net->mutable_op(i);
if (!FoundOpCandidate(op, i, op_type, inputs, outputs, parents, children)) {
continue;
}
const std::string in = op->input(0);
const std::string out = op->output(0);
if (outputs.count(out) != 0) {
if (inputs.count(in) == 0 && outputs.count(in) == 0) {
// Rename all apperances (regardless of inputs/outputs) of in (if not
// in inputs) to out, when out is guaranteed to be produced a parent
// op. With the parents/children graph which remembers all apprerances
// of nodes (not just immediate parent/children), we don't need to
// propagate the outputs back down again because those cases are already
// handled by RenameOutputInParents and RenameInputsInChildren
if (parents.count(in) > 0 && !parents[in].empty()) {
RenameOutputInParents(in, out, net, parents);
VLOG(2) << "InplaceOps(" << op_type << ") inplacing op:\n"
<< op->DebugString();
RenameInputsInChildren(in, out, net, children);
RenameInputs(in, out, op, i, children);
}
}
}
}
// Remove inplace ops
int i = 0;
while (i < net->op_size()) {
OperatorDef op = net->op(i);
if (op.type() == op_type && op.input_size() == 1 && op.output_size() == 1 &&
op.input(0) == op.output(0)) {
net->mutable_op()->erase(net->mutable_op()->begin() + i);
num_removed++;
VLOG(2) << "RemoveOpsByType(" << op_type << ") deleting inplace op: \n"
<< op.DebugString();
} else {
i++;
VLOG(2) << "RemoveOpsByType(" << op_type << ") skipping op: \n"
<< op.DebugString();
}
}
VLOG(2) << "RemoveOpsByType(" << op_type << ") removed " << num_removed
<< " ops";
}
} // namespace caffe2
|