1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
|
## @package checkpoint
# Module caffe2.python.checkpoint
import os
import logging
from caffe2.python import core, context
from caffe2.python.net_builder import ops
from caffe2.python.task import (
final_output,
Node,
Task,
TaskGroup,
TaskOutput,
WorkspaceType,
)
logger = logging.getLogger(__name__)
class Job(context.Managed):
"""
A Job defines three TaskGroups: the `init_group`, the `epoch_group` and the
`exit_group` which will be run by a JobRunner.
The `init_group` will be run only once at startup. Its role is to
initialize globally persistent blobs such as model weights, accumulators
and data file lists.
The `epoch_group` will be run in a loop after init_group. The loop will
exit when any of the stop signals added with `add_stop_condition` is True
at the end of an epoch.
The download_group will be run only once, after all the executions of
epoch_group finish. Its role is to collect the distribute scattered
parameters back after training.
The `exit_group` will be run only once at the very end of the job, the
role of this group is to save the results of training in the end of the job.
Jobs are context-driven, so that Tasks can be added to the active Job
without having to explicitly pass the job object around.
Example of usage:
def build_reader(partitions):
with Job.current().init_group:
reader = HiveReader(init_reader, ..., partitions)
Task(step=init_reader)
with Job.current().epoch_group:
limited_reader = ReaderWithLimit(reader, num_iter=10000)
data_queue = pipe(limited_reader, num_threads=8)
Job.current().add_stop_condition(limited_reader.data_finished())
return data_queue
def build_hogwild_trainer(reader, model):
with Job.current().init_group:
Task(step=model.param_init_net)
with Job.current().epoch_group:
pipe(reader, processor=model, num_threads=8)
with Job.current().exit_group:
Task(step=model.save_model_net)
with Job() as job:
reader = build_reader(partitions)
model = build_model(params)
build_hogwild_trainer(reader, model)
"""
def __init__(self,
init_group=None, epoch_group=None,
download_group=None, exit_group=None,
stop_conditions=None, nodes_to_checkpoint=None):
self.init_group = init_group or TaskGroup(
workspace_type=WorkspaceType.GLOBAL)
self.epoch_group = epoch_group or TaskGroup()
self.download_group = download_group or TaskGroup()
self.exit_group = exit_group or TaskGroup()
self.stop_conditions = stop_conditions or []
self._nodes_to_checkpoint = nodes_to_checkpoint
def nodes_to_checkpoint(self):
if self._nodes_to_checkpoint:
return self._nodes_to_checkpoint
else:
return self.init_group.used_nodes()
def compile(self, session_class):
self._nodes_to_checkpoint = self.nodes_to_checkpoint()
self.init_group = session_class.compile(self.init_group)
self.epoch_group = session_class.compile(self.epoch_group)
self.download_group = session_class.compile(self.download_group)
self.exit_group = session_class.compile(self.exit_group)
def __enter__(self):
super(Job, self).__enter__()
self.epoch_group.__enter__()
return self
def __exit__(self, *args):
self.epoch_group.__exit__()
super(Job, self).__exit__(*args)
def add_stop_condition(self, output):
if isinstance(output, core.BlobReference):
t = Task(outputs=[output], group=self.epoch_group)
output = t.outputs()[0]
assert isinstance(output, TaskOutput)
self.stop_conditions.append(output)
def get_ckpt_filename(node_name, epoch):
"""Returns the checkpoint filename.
Args:
node_name: A string. The name of the node.
epoch: An integer. The checkpoint epoch.
Returns:
ckpt_filename: A string. The filename of the checkpoint.
"""
return node_name + '.' + str(epoch)
def db_name(epoch, node_name, db_prefix, path_prefix=None):
"""Returns the full db name where checkpoint files are saved.
Args:
epoch: An integer. The checkpoint epoch.
node_name: A string. The name of the node.
db_prefix: A string. The prefix used to construct full db name.
path_prefix: A string. Optional param used to construct db name or path
where checkpoint files are stored.
Returns:
db_name: A string. The absolute path of full_db_name where checkpoint
files are saved
"""
if path_prefix:
db_name = path_prefix + get_ckpt_filename(node_name, epoch)
else:
ckpt_filename = get_ckpt_filename(node_name, epoch)
db_name = os.path.join(db_prefix, ckpt_filename)
return db_name
class CheckpointManager(object):
"""
Controls saving and loading of workspaces on every epoch boundary of a job.
If a CheckpointManager instance is passed to JobRunner, then JobRunner will
call `init`, `read` and `save` at different moments in between epoch runs.
Args:
db_prefix: The prefix used to construct full db name. Since `absolute_path`
is set to True, this will be used as db_name in SaveOp.
node_name: Name of the node where this checkpoint_manager is used.
db_type: Type of database to use for storing checkpoint.
metadata_handler: An optional object capable of reading/writing
checkpoint info in storage of choice.
"""
BLOB_NAMES = "blob_names"
def __init__(self, db_prefix, node_name, db_type, metadata_handler=None):
self._db_prefix = db_prefix
self._node_name = node_name
self._db_type = db_type
self._metadata_handler = metadata_handler
# make sure these blobs are the first in the checkpoint file.
self._net = core.Net('!!checkpoint_mngr')
self._blob_names = self._net.AddExternalInput(self.BLOB_NAMES)
self._names_output = None
self._path_prefix = None
self._path_type = None
self._current_db_name = None
self._current_checkpoint_duration = None
"""
Initialize the checkpoint manager. Determines all blobs that need to be saved
or loads from a checkpoint.
Args:
nodes: An array of nodes where this checkpoint manager is running. Should
only contain a single node.
retrieve_from_epoch: Set to a number to load blobs from this epoch.
path_prefix: Used to construct db name or path where checkpoint files are
stored.
path_type: Indicate the type of path where checkpoint files are stored.
"""
def init(
self,
nodes=None,
retrieve_from_epoch=None,
path_prefix=None,
path_type=None
):
"""
Build a Task that will be run once after the job's `init_group` is run.
This task will determine which blobs need to be checkpointed.
If retrieve_from_epoch is not None, then the checkpoint metadata is
retrieved from a previously saved checkpoint.
"""
assert nodes is None or len(nodes) == 1, (
'CheckpointManager only supports single node.')
with Task(outputs=[self._blob_names]) as task:
if retrieve_from_epoch is None:
ops.GetAllBlobNames(
[],
self._blob_names,
include_shared=False)
else:
full_db_name = db_name(retrieve_from_epoch,
self._node_name, self._db_prefix, path_prefix)
db_type = path_type or self._db_type
logger.info("Initializing checkpoints from = %s"
% full_db_name)
ops.Load(
[], self._blob_names,
db=full_db_name,
db_type=db_type,
absolute_path=True,
keep_device=True,
)
self._names_output = task.outputs()[0]
return task
def blob_list(self):
assert self._names_output
return self._names_output.fetch().tolist()
def _timed_task(self, cp_op_name, add_op):
"""
Build a Task that will measure the time span of checkpoint operations,
once operation is done, time can be read from _current_checkpoint_duration.
Args:
cp_op_name: A string name of the checkpoint operation.
add_op: A functor to add the checkpoint operation.
Returns:
A task with timer.
"""
with Task(name=cp_op_name) as task:
with ops.task_init():
timer = ops.TimerBegin([], counter_name=self._node_name)
add_op()
with ops.task_exit():
time_span_blob = ops.TimerGetAndEnd(timer)
self._current_checkpoint_duration = final_output(time_span_blob)
return task
def collect_checkpoint_stats(self, stats):
"""
Add one checkpoint stats into the stats.
Args:
stats: A dict of checkpoint stats that will be reported.
"""
if self._current_db_name and self._current_checkpoint_duration:
stats[self._current_db_name] = self._current_checkpoint_duration.fetch()[0]
else:
logger.info(
"Failed to collect checkpoint stats: {}".format(
self._current_db_name
)
)
def load(self, epoch, path_prefix=None, path_type=None):
"""
Build a Task that will be run by JobRunner when the job is to be
resumed from a given epoch. This task will run a Load op that will
load and deserialize all relevant blobs from a persistent storage.
"""
self._current_db_name = db_name(
epoch, self._node_name, self._db_prefix, path_prefix
)
db_type = path_type or self._db_type
logger.info("Loading checkpoints from = %s" % self._current_db_name)
def add_op():
ops.Load(
[],
self.blob_list(),
db=self._current_db_name,
db_type=db_type,
absolute_path=True,
keep_device=True,
)
return self._timed_task('checkpoint_load', add_op)
def load_blobs_from_checkpoint(self, blob_names, epoch):
"""
Builds a Task that loads only the necessary blobs from a checkpoint of
the given epoch. The necessary blobs are given in the blob_names
argument.
Args:
blob_names: A list of strings. Each string is the name of a
blob.
epoch: The checkpoint epoch to load from.
Returns:
A Task which loads the specified blobs from the checkpoint of the
given epoch.
"""
self._current_db_name = db_name(epoch, self._node_name, self._db_prefix)
logger.info('Load from %s' % self._current_db_name)
def add_op():
ops.Load(
[],
blob_names,
db=self._current_db_name,
db_type=self._db_type,
absolute_path=True,
allow_incomplete=True)
return self._timed_task('checkpoint_partial_load', add_op)
def check_db_exists(self, epoch):
logger.info('Check existence of %s' %
db_name(epoch, self._node_name, self._db_prefix))
with Task() as task:
existence = ops.Const(False)
ops.DBExists(
[],
[existence],
db_name=db_name(epoch, self._node_name, self._db_prefix),
db_type=self._db_type,
absolute_path=True)
task.add_output(existence)
return task
def report_checkpoint_stats(self, action_name):
"""
Report checkpoint operation stats for current node.
Args:
action_name: A string of the name of checkpoint operation.
"""
all_stats = {}
self.collect_checkpoint_stats(all_stats)
if self._metadata_handler:
self._metadata_handler.report(action_name, all_stats)
def save(self, epoch):
"""
Build a Task that is run once after `init_group` and after each
epoch is run. This will execute a Save ops to serialize and persist
blobs present in the global workspace.
"""
self._current_db_name = db_name(epoch, self._node_name, self._db_prefix)
logger.info('Saving to %s' % self._current_db_name)
def add_op():
ops.Save(
self.blob_list(), [],
db=self._current_db_name,
db_type=self._db_type,
absolute_path=True)
return self._timed_task('checkpoint_save', add_op)
def write_checkpoint_metadata(self, epoch):
"""
Write metadata for checkpoint
Args:
epoch: An integer. The epoch-id for which checkpoint metadata is
written
"""
if self._metadata_handler is not None:
self._metadata_handler.write(epoch=epoch)
def get_resume_from_epoch_id(self, user_epoch=None):
"""
Identify the epoch-id from which Job must resume
Args:
user_epoch: An integer. Optional parameter for user to explicitly
identify the epoch-id to load checkpoint from
Returns:
epoch: the epoch-id to load checkpoints from
or None if no checkpoints were written
"""
last_epoch = user_epoch
if self._metadata_handler is not None:
last_epoch = self._metadata_handler.last_epoch(user_epoch=user_epoch)
return last_epoch
def set_params(self, nodes, path_prefix=None, path_type=None):
"""Set parameters associated with CP manager
Args:
nodes: An array of nodes where this checkpoint manager is running.
path_prefix: Used to construct db name or path where checkpoint files are
stored.
path_type: Indicate the type of path where checkpoint files are stored.
"""
if path_prefix:
self._path_prefix = path_prefix
if path_type:
self._path_type = path_type
if self._metadata_handler:
self._metadata_handler.set_params(
db_prefix=self._db_prefix,
db_type=self._db_type,
node_names=[str(self._node_name)],
path_prefix=self._path_prefix,
path_type=self._path_type)
def cp_accessible(self, epoch=None):
"""Returns True if Checkpoint data is accessible
Args:
epoch: An integer. The epoch of the checkpoint. If None,
it implies we need to check if checkpoint directory is accessible
Returns:
is_cp_accessible: A boolean. Returns True if Checkpoint data is accessible
"""
if self._metadata_handler is not None:
return self._metadata_handler.cp_accessible(epoch)
else:
return True
class MultiNodeCheckpointManager(object):
"""
Coordinates checkpointing and checkpointing across multiple nodes.
Each of `init`, `load` and `save` will build TaskGroups which will
trigger checkpointing on each of the nodes involved in a distributed job.
Args:
db_prefix: The prefix used to construct full db name. Since `absolute_path`
is set to True, this will be used as db_name in SaveOp.
db_type: Type of database to use for storing checkpoint.
metadata_handler: An optional object capable of reading/writing
checkpoint info in storage of choice.
"""
def __init__(self, db_prefix, db_type, metadata_handler=None):
self._node_managers = None
self._db_prefix = db_prefix
self._db_type = db_type
self._metadata_handler = metadata_handler
self._path_prefix = None
self._path_type = None
def _task_group(self, func, *args, **kw):
assert self._node_managers is not None, 'init must be called first.'
with TaskGroup(WorkspaceType.GLOBAL) as task_group:
for node, manager in self._node_managers:
with Node(node):
func(manager, *args, **kw)
return task_group
"""
Args:
nodes: An array of nodes where this checkpoint manager is running.
retrieve_from_epoch: Set to a number to load blobs from this epoch.
path_prefix: Used to construct db name or path where checkpoint files are
stored.
path_type: Indicate the type of path where checkpoint files are stored.
"""
def init(
self, nodes, retrieve_from_epoch=None, path_prefix=None, path_type=None
):
if self._node_managers is not None:
assert [node for node, _ in self._node_managers] == nodes
return TaskGroup(WorkspaceType.GLOBAL)
self._node_managers = []
for node in nodes:
with Node(node):
manager = CheckpointManager(
db_prefix=self._db_prefix,
node_name=str(node),
db_type=self._db_type)
self._node_managers.append((node, manager))
return self._task_group(
CheckpointManager.init,
nodes=[node],
retrieve_from_epoch=retrieve_from_epoch,
path_prefix=path_prefix,
path_type=path_type)
def load(self, epoch, path_prefix=None, path_type=None):
return self._task_group(
CheckpointManager.load,
epoch,
path_prefix=path_prefix,
path_type=path_type)
def load_blobs_locally(self, nodes, blob_names, epoch, session):
"""Loads the necessary blobs from the checkpoints to the current node.
Args:
blob_names: A list of strings. Each string is the name of a
blob.
epoch: An integer. The checkpoint epoch to load from.
session: A Session object to execute the Load ops.
"""
if self._node_managers is not None:
assert [node for node, _ in self._node_managers] == nodes
else:
self._node_managers = []
for node in nodes:
with Node(node):
manager = CheckpointManager(
db_prefix=self._db_prefix,
node_name=str(node),
db_type=self._db_type)
self._node_managers.append((node, manager))
assert self._node_managers is not None, 'must initialize node managers'
for _, manager in self._node_managers:
existence_task = manager.check_db_exists(epoch)
session.run(existence_task)
existence = existence_task.outputs()[0].fetch()
if not existence:
logger.info('DB %s does not exist!' %
db_name(epoch, manager._node_name, manager._db_prefix))
return False
load_task = manager.load_blobs_from_checkpoint(blob_names, epoch)
session.run(load_task)
logger.info('Successfully loaded from checkpoints.')
return True
def get_ckpt_db_name(self, node_name, epoch):
"""Returns the DB name of the given node and the given epoch.
The DB name is effectively the checkpoint path of the given node and
the given epoch.
Args:
node_name: A string. The node name of interest.
epoch: An integer. The epoch of the checkpoint.
Returns:
checkpoint_db_name: A string. The checkpoint path of the given
node and the given epoch.
"""
for node, manager in self._node_managers:
if str(node) == node_name:
return db_name(epoch, manager._node_name, manager._db_prefix)
def report_checkpoint_stats(self, action_name):
"""
Report the checkpoint stats for all the nodes, we need to aggregate all
the node's stats together so that we know which node's checkpoint
operation dominates.
Args:
action_name: A string of the name of checkpoint operation.
"""
all_stats = {}
for _, manager in self._node_managers:
manager.collect_checkpoint_stats(all_stats)
logger.debug("checkpoint stats: {}".format(all_stats))
if self._metadata_handler:
self._metadata_handler.report(action_name, all_stats)
def save(self, epoch):
"""
Build a Task that will execute a Save ops to serialize and persist
blobs present in the global workspace.
"""
return self._task_group(CheckpointManager.save, epoch)
def write_checkpoint_metadata(self, epoch):
"""
Write metadata for checkpoint
Args:
epoch: An integer. The epoch-id for which checkpoint metadata is
written
"""
if self._metadata_handler is not None:
self._metadata_handler.write(epoch=epoch)
def get_resume_from_epoch_id(self, user_epoch=None):
"""
Identify the epoch-id from which Job must resume
Args:
user_epoch: An integer. Optional parameter for user to explicitly
identify the epoch-id to load checkpoint from
Returns:
epoch: the epoch-id to load checkpoints from
or None if no checkpoints were written
"""
last_epoch = user_epoch
if self._metadata_handler is not None:
last_epoch = self._metadata_handler.last_epoch(user_epoch=user_epoch)
return last_epoch
def set_params(self, nodes, path_prefix=None, path_type=None):
"""Set parameters associated with CP manager
Args:
nodes: An array of nodes where this checkpoint manager is running.
path_prefix: Used to construct db name or path where checkpoint files are
stored.
path_type: Indicate the type of path where checkpoint files are stored.
"""
self._node_names = [str(node) for node in nodes]
if path_prefix:
self._path_prefix = path_prefix
if path_type:
self._path_type = path_type
if self._metadata_handler:
self._metadata_handler.set_params(
db_prefix=self._db_prefix,
db_type=self._db_type,
node_names=self._node_names,
path_prefix=self._path_prefix,
path_type=self._path_type)
def cp_accessible(self, epoch=None):
"""Returns True if Checkpoint data is accessible
Args:
epoch: An integer. The epoch of the checkpoint. If None,
it implies we need to check if checkpoint directory is accessible
Returns:
is_cp_accessible: A boolean. Returns True if Checkpoint data is accessible
"""
if self._metadata_handler is not None:
return self._metadata_handler.cp_accessible(epoch)
else:
return True
class UploadTaskGroupBuilder(object):
"""A simple class to upload checkpoints."""
def build(self, epoch, checkpoint_manager):
"""Builds the task group to upload checkpoints.
Args:
epoch: An integer. The checkpoint epoch to be uploaded.
checkpoint_manager: Can be a CheckpointManager for single machine
or a MultiNodeCheckpointManager for multi-machine. The manager
that initializes/saves/loads checkpoints.
Raises:
NotImplementedError: This base class only has the interface,
the implementation will be in the subclasses.
"""
raise NotImplementedError()
class JobRunner(object):
"""
Implement the runtime logic for jobs with checkpointing at the level of
epoch. Can be used to run either single-host or distributed jobs. Job
runner is a callable to be called once from the master, passing a session
as an argument. This call will block until the Job execution is complete.
If a checkpoint_manager is passed, checkpoints will be taken after
initialization and after each epoch execution. If, in addition,
`resume_from_epoch` is an epoch number, the corresponding checkpoint will
be loaded and job execution will continue from the given epoch. In
this case, the job's init_group will not be run.
Refer to checkpoint_test.py for an example.
"""
def __init__(self, job, checkpoint_manager=None, resume_from_epoch=None,
upload_task_group_builder=None):
"""Initializes the JobRunner.
Args:
job: A Job object. The job to be executed.
checkpoint_manager: Can be a CheckpointManager for single machine
or a MultiNodeCheckpointManager for multi-machine. The manager
that initializes/saves/loads checkpoints.
resume_from_epoch: An integer. The epoch to resume from.
upload_task_group_builder: A subclass of the
UploadTaskGroupBuilder. Creates a task group to upload
checkpoints.
"""
self.resume_from_epoch = resume_from_epoch
self.checkpoint_manager = checkpoint_manager
self.job = job
self.upload_task_group_builder = upload_task_group_builder
def train(self, session):
"""Runs the training flow.
Args:
session: A Session object. Valid choises are: LocalSession,
LocalHostScheduler, and DistributedSession. It is used to
execute one TaskGroup a time.
"""
# identify the epoch we must resume from
if self.checkpoint_manager:
self.checkpoint_manager.set_params(nodes=self.job.nodes_to_checkpoint())
self.resume_from_epoch = self.checkpoint_manager.\
get_resume_from_epoch_id(self.resume_from_epoch)
if self.resume_from_epoch is not None:
logger.info('Resuming from epoch {}'.format(self.resume_from_epoch))
# Initialize all the nodes.
from_scratch = self.resume_from_epoch is None
if from_scratch:
session.run(self.job.init_group)
if self.checkpoint_manager:
logger.info('Preparing checkpoints ...')
session.run(self.checkpoint_manager.init(
self.job.nodes_to_checkpoint(),
retrieve_from_epoch=self.resume_from_epoch))
# Save the first checkpoint before training starts, or resume from
# a previously saved checkpoint.
if from_scratch:
self.save_checkpoints(0, session)
else:
logger.info('Loading checkpoints for epoch {} ...'.format(
self.resume_from_epoch))
session.run(
self.checkpoint_manager.load(self.resume_from_epoch))
self.checkpoint_manager.report_checkpoint_stats('checkpoint_load')
logger.info('Checkpoint loaded')
logger.info("Finished initializing")
# Start training.
epoch = 1 if from_scratch else self.resume_from_epoch + 1
while True:
logger.info('Starting epoch %d' % epoch)
session.run(self.job.epoch_group)
logger.info('Finished epoch %d' % epoch)
stop_conditions = [o.fetch() for o in self.job.stop_conditions]
if self.checkpoint_manager:
self.save_checkpoints(epoch, session)
if any(stop_conditions):
logger.info('Stopping')
break
epoch += 1
logger.info('Finished training')
# Upload the checkpoints.
if (self.upload_task_group_builder):
upload_task_group = self.upload_task_group_builder.build(
epoch, self.checkpoint_manager)
session.run(upload_task_group)
logger.info('Finished uploading the checkpoints')
# Download the parameters to save
session.run(self.job.download_group)
logger.info('Finished downloading the parameters')
# Finally run the exit step to save nets
session.run(self.job.exit_group)
logger.info('Finished running the exit group')
return epoch
def load_blobs_from_checkpoints(self, blob_names, epoch, session):
"""Loads the necessary blobs from the checkpoints.
Checkpoints store the snapshots of the workspace in each node.
Sometimes we only need to load a subset of the blobs from the
checkpoints. One common scenario is to load only the model blobs from
the checkpoints for evaluation purpose. Given the names of the
necessary blobs, this function goes over all the checkpoints of all the
nodes, but only loads the blobs specified in the blob_names to the
current workspace.
Args:
blob_names: A list of strings. Each string is the name of a
blob.
epoch: An integer. The checkpoint epoch to load from.
session: A Session object to execute the load ops.
Raises:
ValueError: When the checkpoint manager is invalid.
"""
if not self.checkpoint_manager:
raise ValueError('Checkpoint manager is None')
logger.info('Loading checkpoint for epoch {} ...'.format(epoch))
result = self.checkpoint_manager.load_blobs_locally(
self.job.nodes_to_checkpoint(), blob_names, epoch, session)
self.checkpoint_manager.report_checkpoint_stats('checkpoint_partial_load')
return result
def save_checkpoints(self, epoch, session):
"""Triggers operation to save checkpoints
This method will trigger the Save ops to serialize and persist the
blobs present in the global workspaace.
Args:
epoch: An integer. The checkpoint epoch-id that we are saving.
session: A Session object to execute the save ops.
Raises:
ValueError: When the checkpoint manager is invalid.
"""
if not self.checkpoint_manager:
raise ValueError('Checkpoint manager is None')
try:
is_accessible = self.checkpoint_manager.cp_accessible(epoch=None)
if is_accessible:
logger.info('Saving checkpoints for epoch {}'.format(epoch))
session.run(self.checkpoint_manager.save(epoch))
self.checkpoint_manager.write_checkpoint_metadata(epoch)
logger.info('Checkpoints saved')
self.checkpoint_manager.report_checkpoint_stats('checkpoint_save')
else:
logger.warning("Checkpoint files cannot be accessed!")
except Exception as ex:
logger.warning("Unable to write checkpoint for epoch {}. Error={}".
format(epoch, ex))
def epoch_limiter(job, num_epochs):
"""
Creates a task that will output True when a given
number of epochs has finished.
"""
with job.init_group:
init_net = core.Net('epoch_counter_init')
counter = init_net.CreateCounter([], init_count=num_epochs - 1)
Task(step=init_net)
with job.epoch_group:
epoch_net = core.Net('epoch_countdown')
finished = epoch_net.CountDown(counter)
output = Task(step=epoch_net, outputs=finished).outputs()[0]
job.add_stop_condition(output)
|