1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
|
## @package core
# Module caffe2.python.core
from collections import namedtuple, OrderedDict, defaultdict
from past.builtins import basestring
from future.utils import viewitems, viewkeys, viewvalues
from itertools import chain
from six import binary_type, string_types, text_type
from caffe2.proto import caffe2_pb2
from caffe2.python import scope, utils, workspace
from caffe2.python.lazy import TriggerLazyImport
from caffe2.python.control_ops_grad import \
gen_do_gradient, gen_if_gradient, gen_while_gradient, disambiguate_grad_if_op_output
import caffe2.python._import_c_extension as C
import copy
import pickle
import numpy as np
import sys
import traceback
import os
# Mac os specific message
if (sys.platform == 'darwin' and 'leveldb' in C.registered_dbs()):
print('If you are using homebrew leveldb on a Mac OS, you might see an '
'error warning you that malloc_zone_unregister() failed. This is '
'not a caffe2 issue but is due to the homebrew leveldb having an '
'incompatible memory allocator. It does not affect usage.')
# Convenience redirections to functions inside scope.
DeviceScope = scope.DeviceScope
NameScope = scope.NameScope
# Bring datatype enums to the main namespace
class DataType:
UNDEFINED = 0
FLOAT = 1
INT32 = 2
BYTE = 3
STRING = 4
BOOL = 5
UINT8 = 6
INT8 = 7
UINT16 = 8
INT16 = 9
INT64 = 10
FLOAT16 = 12
DOUBLE = 13
ZERO_COLLISION_HASH = 14
REBATCHING_BUFFER = 15
def _CheckDataType():
# Verify that the DataType values defined above match the ones defined in
# the caffe2.proto file
for name, value in caffe2_pb2.TensorProto.DataType.items():
py_value = getattr(DataType, name, None)
if py_value != value:
raise AssertionError(
f"DataType {name} does not match the value defined in "
f"caffe2.proto: {py_value} vs {value}"
)
_CheckDataType()
def _GetRegisteredOperators():
return set(workspace.RegisteredOperators())
_REGISTERED_OPERATORS = _GetRegisteredOperators()
def RefreshRegisteredOperators(trigger_lazy=True):
if trigger_lazy:
TriggerLazyImport()
global _REGISTERED_OPERATORS
_REGISTERED_OPERATORS = _GetRegisteredOperators()
_GLOBAL_INIT_ARGS = []
def GlobalInit(args):
TriggerLazyImport()
_GLOBAL_INIT_ARGS.extend(args[1:])
C.global_init(args)
def GetGlobalInitArgs():
return _GLOBAL_INIT_ARGS[:]
def IsOperator(op_type):
return IsOperatorWithEngine(op_type, engine='DEFAULT')
def IsOperatorWithEngine(op_type, engine):
TriggerLazyImport()
return C.op_registry_key(op_type, engine) in _REGISTERED_OPERATORS
def IsGPUDeviceType(device_type):
return device_type in {caffe2_pb2.CUDA, caffe2_pb2.HIP}
def DeviceOption(
device_type,
device_id=0,
random_seed=None,
node_name=None,
numa_node_id=None,
extra_info=None,
):
option = caffe2_pb2.DeviceOption()
option.device_type = device_type
option.device_id = device_id
if node_name is not None:
option.node_name = node_name
if random_seed is not None:
option.random_seed = random_seed
if numa_node_id is not None:
assert device_type == caffe2_pb2.CPU
option.numa_node_id = numa_node_id
if extra_info is not None:
option.extra_info.extend(extra_info)
return option
def device_option_equal(opt1, opt2, ignore_node_name=True, ignore_random_seed=True):
if not opt1 or not opt2:
return opt1 == opt2
if not ignore_node_name and opt1.node_name != opt2.node_name:
return False
if not ignore_random_seed and opt1.random_seed != opt2.random_seed:
return False
if not opt1.device_type or not opt2.device_type:
# At least one option is for CPU, check if both are for CPU.
return not opt1.device_type and not opt2.device_type
return opt1.device_id == opt2.device_id
def InferBlobDevices(net):
'''
Compute mapping from parameters to devices by looking at the
device option of the op that creates the blob has
'''
mapping = {}
for op in net.Proto().op:
op_device = op.device_option
if op_device is None:
op_device = caffe2_pb2.DeviceOption(caffe2_pb2.CPU)
# TODO: T18892922, use device annotations
for b in op.output:
mapping[b] = op_device
return mapping
def InferOpBlobDevicesAsDict(op):
input_dev_list, output_dev_list = InferOpBlobDevices(op)
input_dict = {
op.input[i]: input_dev_list[i]
for i in range(len(op.input))
}
output_dict = {
op.output[i]: output_dev_list[i]
for i in range(len(op.output))
}
return input_dict, output_dict
def InferOpBlobDevices(op):
device_info = C.infer_op_input_output_device(op.SerializeToString())
input_info = []
output_info = []
for dev_str in device_info[0]:
device_option = caffe2_pb2.DeviceOption()
device_option.ParseFromString(dev_str)
input_info.append(device_option)
for dev_str in device_info[1]:
device_option = caffe2_pb2.DeviceOption()
device_option.ParseFromString(dev_str)
output_info.append(device_option)
return input_info, output_info
def InferOpDeviceAsBlobDevices(op):
op_dev = op.device_option if op.device_option else caffe2_pb2.DeviceOption()
input_dev = [op_dev] * len(op.input)
output_dev = [op_dev] * len(op.output)
return input_dev, output_dev
GradientSlice = namedtuple('GradientSlice', ['indices', 'values'])
class BlobReference(object):
"""A wrapper around a blob in a net.
BlobReference gives us a way to refer to the network that the blob is
generated from. Note that blobs are, essentially, just strings in the
current workspace.
"""
def __init__(self, name, net=None):
"""Initializes a blob reference.
Note that this does not prepends the namescope. If needed, use
ScopedBlobReference() to prepend the existing namespace.
"""
if isinstance(name, string_types):
self._name = name
elif isinstance(name, binary_type):
self._name = name.decode('utf-8')
else:
self._name = str(name)
self._from_net = net
# meta allows helper functions to put whatever metainformation needed
# there.
self.meta = {}
def __hash__(self):
return hash(self._name)
def __eq__(self, other):
if isinstance(other, string_types):
return self._name == other
elif isinstance(other, binary_type):
return self._name == other.decode('utf-8')
elif isinstance(other, BlobReference):
return self._name == other._name
else:
return False
def __ne__(self, other):
return not(self == other)
def __str__(self):
return self._name
def __repr__(self):
return 'BlobReference("{}")'.format(self._name)
def __add__(self, other):
if not isinstance(other, string_types):
raise RuntimeError('Cannot add BlobReference to a non-string.')
return BlobReference(self._name + other, self._from_net)
def __radd__(self, other):
if not isinstance(other, string_types):
raise RuntimeError('Cannot add a non-string to BlobReference.')
return BlobReference(other + self._name, self._from_net)
def Net(self):
return self._from_net
def GetNameScope(self):
return self._name[:self._name.rfind(scope._NAMESCOPE_SEPARATOR) + 1]
def GetUnscopedName(self):
return self._name[self._name.rfind(scope._NAMESCOPE_SEPARATOR) + 1:]
def _CreateAndAddToNet(self, op_type, inputs=None, *args, **kwargs):
"""Internal function that routes the operator generation to the
network's __getattr__ function.
"""
inputs = [] if inputs is None else inputs
if isinstance(inputs, BlobReference) or isinstance(inputs, string_types):
inputs = [inputs]
# add self to the input list.
inputs.insert(0, self)
return self._from_net.__getattr__(op_type)(inputs, *args, **kwargs)
def __getattr__(self, op_type):
"""A wrapper allowing one to initiate operators from a blob reference.
Example: for a blob reference b that comes from network n, doing
b.Relu(...)
is equivalent to doing
net.Relu([b], ...)
"""
if op_type.startswith('__'):
raise AttributeError('Attribute {} not found.'.format(op_type))
if self._from_net is None:
raise AttributeError(
'You cannot use a blob reference that does not have a net '
'source to create operators. Create the operator from an '
'explicit net object.')
if not IsOperator(op_type):
raise AttributeError(
'Method ' + op_type + ' is not a registered operator.' +
' Did you mean: [' +
",".join(workspace.C.nearby_opnames(op_type)) + ']'
)
return lambda *args, **kwargs: self._CreateAndAddToNet(
op_type, *args, **kwargs)
def __dir__(self):
TriggerLazyImport()
additional_methods = [
op
for op in _REGISTERED_OPERATORS
if '_ENGINE_' not in op or '_ENGINE_CUDNN' in op]
return sorted(set(chain(
dir(type(self)),
viewkeys(self.__dict__),
additional_methods
)))
def ScopedName(name):
"""prefix the name with the current scope."""
if isinstance(name, binary_type):
name = name.decode('ascii')
return scope.CurrentNameScope() + name
def ScopedBlobReference(name, *args, **kwargs):
"""Returns a blob reference with scope prefixed."""
return BlobReference(ScopedName(name), *args, **kwargs)
def _RectifyInputOutput(blobs, net=None):
"""A helper function to rectify the input or output of the CreateOperator
interface.
"""
if isinstance(blobs, string_types) or isinstance(blobs, binary_type):
# If blobs is a single string, prepend scope.CurrentNameScope()
# and put it as a list.
# TODO(jiayq): enforce using BlobReference instead of raw strings.
return [ScopedBlobReference(blobs, net=net)]
elif type(blobs) is BlobReference:
# If blob is a BlobReference, simply put it as a list.
return [blobs]
elif type(blobs) in (list, tuple):
# If blob is a list, we go through it and type check.
rectified = []
for blob in blobs:
if isinstance(blob, string_types) or isinstance(blob, binary_type):
rectified.append(ScopedBlobReference(blob, net=net))
elif type(blob) is BlobReference:
rectified.append(blob)
else:
raise TypeError(
"I/O blob #{} of unsupported type: {} of type {}"
.format(len(rectified), str(blob), type(blob)))
return rectified
else:
raise TypeError(
"Unknown input/output type: %s of type %s." %
(str(blobs), type(blobs))
)
def CreateOperator(
operator_type,
inputs,
outputs,
name='',
control_input=None,
device_option=None,
arg=None,
engine=None,
debug_info=None,
**kwargs
):
"""A function wrapper that allows one to create operators based on the
operator type. The type should be a string corresponding to an operator
registered with Caffe2.
"""
operator = caffe2_pb2.OperatorDef()
if (os.environ.get('CAFFE2_DEBUG')):
stack = traceback.format_stack()
operator.debug_info = "".join(stack[:-1])
operator.type = operator_type
operator.name = name
# Add rectified inputs and outputs
inputs = _RectifyInputOutput(inputs)
outputs = _RectifyInputOutput(outputs)
operator.input.extend([text_type(i) for i in inputs])
operator.output.extend([text_type(o) for o in outputs])
if control_input:
control_input = _RectifyInputOutput(control_input)
operator.control_input.extend([text_type(i) for i in control_input])
# Set device option:
# (1) If device_option is explicitly set, use device_option.
# (2) If not, but scope.CurrentDeviceScope() is set,
# then we use scope.CurrentDeviceScope().
# (3) Otherwise, do not set device option.
if device_option is not None:
operator.device_option.CopyFrom(device_option)
elif scope.CurrentDeviceScope() is not None:
operator.device_option.CopyFrom(scope.CurrentDeviceScope())
if engine is not None:
operator.engine = engine
if debug_info is not None:
operator.debug_info = debug_info
# random seed is defined in the device option, so we need to do special
# care.
if 'random_seed' in kwargs:
operator.device_option.random_seed = kwargs['random_seed']
del kwargs['random_seed']
# Add given arguments that do not need parsing
if arg is not None:
operator.arg.extend(arg)
# Add all other arguments
for key, value in viewitems(kwargs):
if value is not None:
operator.arg.add().CopyFrom(utils.MakeArgument(key, value))
if workspace.IsImmediate():
workspace.RunOperatorImmediate(operator)
return operator
def _RegisterPythonImpl(
f, grad_f=None, python_func_type=None, pass_workspace=False
):
if python_func_type:
func = python_func_type(f)
f = func.forward
grad_f = func.backward
else:
if isinstance(f, tuple):
f = f[0](*f[1], **f[2])
if isinstance(grad_f, tuple):
grad_f = grad_f[0](*grad_f[1], **grad_f[2])
token = C.register_python_op(f, pass_workspace, '')
if grad_f:
C.register_python_gradient_op(token, grad_f)
return token
def CreatePythonOperator(
f, inputs,
outputs,
grad_f=None,
pass_workspace=False,
python_func_type=None,
*args,
**kwargs
):
"""
`f` should have a signature (inputs, outputs)
If `pass_workspace` is True, the signature is changed to
(inputs, outputs, workspace) where `workspace` is the workspace the op
is going to run on. This is potentially dangerous (as the op can manipulate
the workspace directly), use on your own risk.
"""
kwargs["token"] = _RegisterPythonImpl(
f, grad_f, python_func_type, pass_workspace=pass_workspace
)
return CreateOperator("Python", inputs, outputs, *args, **kwargs)
def GetIndexFromGradientList(g_list, name):
"""A helper function to get the index from a gradient list, None if not
matching."""
for i, g in enumerate(g_list):
if g == name:
return i
elif type(g) is GradientSlice:
if (g.indices == name or g.values == name):
return i
return None
OpSSA = namedtuple('OpSSA', ['op', 'in_versions', 'out_versions'])
GradGenMeta = namedtuple('GradGenMeta',
['grad_op', 'idx', 'gradient', 'device_option'])
SparseGradGenMeta = namedtuple('SparseGradGenMeta', [
'grad_op_indices', 'idx_indices',
'grad_op_values', 'idx_values',
'gradient', 'device_option',
])
class IR(object):
"""A simple IR class to keep track of all intermediate representations used
in the gradient computation.
"""
def __init__(self, operators):
# The IR class holds multiple metadata from the forward pass:
# a) ssa: a list of [op, in_versions, out_versions] recording the
# input and the output version of each operator, similar
# to a normal SSA form.
# b) input_usages: a dictionary specifying for each blob and
# each of its version, how many times it is used as input for another
# op.
# c) frontier: maintaining the current versions of the blobs
# we are having in the workspace, after the execution of all the ops
# added to the IR so far. This is useful because if a gradient is
# trying to access an earlier version of a blob, we can sanity check
# that it is no longer there, and thus throw an error.
# d) gradient_frontier: maps the names of blobs to its version that the
# gradient corresponds to.
# e) gradient_generators: for each blob and each of its version, maps to
# a list of operators that generates its gradient together with the
# gradient name.
self.ssa = []
self.input_usages = defaultdict(lambda: defaultdict(list))
self.frontier = defaultdict(int)
self.gradient_frontier = {}
self.gradient_generators = defaultdict(lambda: defaultdict(list))
self.out_version_history = defaultdict(list)
self.in_version_history = defaultdict(list)
for op in operators:
self.Play(op)
self.SanityCheck(operators)
def SanityCheck(self, operators):
# Validate StopGradient usage by checking that StopGradient's output
# is actually passed forward
for op in operators:
if op.type == 'StopGradient':
if op.output[0] not in self.input_usages:
raise ValueError("""StopGradient's output '{}' is orphan.
You typically want to specify same input and output for
StopGradient. Op:\n\n{}""".format(op.output[0], str(op)))
def Play(self, op):
""""Adds an op to the current IR, and update the internal states to
reflect the blobs and versions after the execution of the op.
"""
# For input, they are the current version in the dict.
in_versions = {}
for s in op.input:
in_versions[s] = self.frontier[s]
self.input_usages[s][self.frontier[s]].append(len(self.ssa))
self.in_version_history[s].append((op, self.frontier[s]))
# For output, they are the current version plus one. If this is a
# newly created blob, its version starts with zero.
out_versions = {}
for s in op.output:
if s in self.frontier:
self.frontier[s] += 1
out_versions[s] = self.frontier[s]
self.out_version_history[s].append((op, self.frontier[s]))
# Add to SSA for bookkeeping.
self.ssa.append(OpSSA(op, in_versions, out_versions))
def CheckGradientOperatorInput(
self, grad_op_input, g_output, fwd_op_idx, locally_generated_blobs):
"""Checks if the gradient operators can be correctly carried out."""
forward_op, in_versions, out_versions = self.ssa[fwd_op_idx]
original_index = GetIndexFromGradientList(g_output, grad_op_input)
# Functions to generate debug help for version-mismatches
def versionMismatchInfoOut(name):
s = "DEBUG HELP:\n"
s += "Maybe you use same output blob twice for different ops?\n"
s += "== Version history of blob [{}]\n".format(name)
for (op, vers) in self.out_version_history[name]:
s += "Version (out) {} <-- {}".format(vers, op)
s += "\n"
return s
def versionMismatchInfoIn(name):
s = "DEBUG HELP:\n"
s += "Maybe the blob was overwritten by another op?\n"
s += "== Version history of blob [{}]\n".format(name)
for (op, vers) in self.in_version_history[name]:
s += "version (in) {} <-- {}".format(vers, op)
s += "\n"
return s
# If it is a dense or sparse gradient name, it should match the
# version of the corresponding output.
if original_index is not None:
original_name = forward_op.output[original_index]
if (out_versions[original_name] !=
self.gradient_frontier[original_name]):
raise RuntimeError(
'Gradient name "%s" is expected to correspond '
'to version %d of "%s", but currently we have '
'version %d.\n\n' % (
grad_op_input, out_versions[original_name],
original_name,
self.gradient_frontier[original_name]) +
versionMismatchInfoOut(original_name))
# If it is an output name, the current version should match the
# version when the operator was run.
elif grad_op_input in out_versions:
if self.frontier[grad_op_input] != out_versions[grad_op_input]:
raise RuntimeError(
'Gradient operator needs output "%s" at version'
' %d, but currently we have version %d.\n\n' % (
grad_op_input, out_versions[grad_op_input],
self.frontier[grad_op_input]
) + versionMismatchInfoOut(grad_op_input)
)
# If it is an input name, the current version should match the
# version when the operator was run.
elif grad_op_input in in_versions:
if (self.frontier[grad_op_input] != in_versions[grad_op_input]):
raise RuntimeError(
'Gradient operator needs input "%s" at version '
'%d, but currently we have version %d.\n\n' % (
grad_op_input, in_versions[grad_op_input],
self.frontier[grad_op_input]
) + versionMismatchInfoIn(grad_op_input)
)
# If it is none of the above, it should be a blob that is
# generated locally by one of the previous gradient operators.
else:
if grad_op_input not in locally_generated_blobs:
raise RuntimeError(
'Blob name "%s" not in the scope of operator: '
'%s\nand is not generated by any of the local '
'gradient operators.' % (grad_op_input, str(forward_op))
)
def AppendSparseGenerators(self, sparse_generators):
# merge indices and values generators for sparse gradients
for name, input_generators in viewitems(sparse_generators):
for version, generators in viewitems(input_generators):
if len(generators) == 1:
# either indices or values are generated (but not both)
generator = generators[0]
else:
# both indices and values are generated
assert(len(generators) == 2)
op1_i, idx1_i, op1_v, idx1_v, g1, dev_1 = generators[0]
op2_i, idx2_i, op2_v, idx2_v, g2, dev_2 = generators[1]
assert(g1 == g2)
assert dev_1 == dev_2, (
"Unequal devices for sparse generators: "
"{} and {}".format(dev1, dev2)
)
assert(op1_i is None or op2_i is None)
assert(op1_v is None or op2_v is None)
assert(idx1_i == 0 or idx2_i == 0)
assert(idx1_v == 0 or idx2_v == 0)
generator = SparseGradGenMeta(
op1_i or op2_i, idx1_i + idx2_i,
op1_v or op2_v, idx1_v + idx2_v,
g1, dev_1)
self.gradient_generators[name][version].append(generator)
def BuildGradientGenerators( # NOQA
self, fwd_op_idx, gradient_ops, g_output, g_input):
"""Updates gradient_generators and gradient_frontier"""
forward_op, in_versions, out_versions = self.ssa[fwd_op_idx]
locally_generated_blobs = []
sparse_generators = defaultdict(lambda: defaultdict(list))
for grad_op in gradient_ops:
# (1) check that inputs are valid
for s in grad_op.input:
self.CheckGradientOperatorInput(
s, g_output, fwd_op_idx, locally_generated_blobs)
# (2) add outputs to the locally generated blobs
# If an output corresponds to the gradient of an input, we also
# record it to gradient_generators
locally_generated_blobs.extend([str(s) for s in grad_op.output])
for i, output in enumerate(grad_op.output):
input_index = GetIndexFromGradientList(g_input, output)
if input_index is not None:
input_name = forward_op.input[input_index]
input_version = in_versions[input_name]
g = g_input[input_index]
if type(g) is GradientSlice:
# the output corresponds either to the indices or the
# values of the sparse gradient. In either case we
# create a (partial) SparseGradGenMeta. If necessary,
# we'll merge indices and values generators
# corresponding to the same gradient in step (3)
if g.indices == output:
m = SparseGradGenMeta(
grad_op, i, None, 0, g, grad_op.device_option)
else:
assert(g.values == output)
m = SparseGradGenMeta(
None, 0, grad_op, i, g, grad_op.device_option)
sparse_generators[input_name][input_version].append(m)
else:
self.gradient_generators[input_name][input_version] \
.append(GradGenMeta(
grad_op, i, g, grad_op.device_option))
# (3) merge indices and values generators for sparse gradients, and
# add them to gradient_generators
self.AppendSparseGenerators(sparse_generators)
# (4) for ops (e.g., Add, Sum, Sub) which have gradient outputs directly
# passed from inputs (not computed from gradient ops), we create an
# GradGenMeta with None grad_op and idx so that the gradient_generators
# knows where the gradients are coming from. This is needed for creating
# Sum op to accumulate the gradients from multiple parents.
for input_index, g in enumerate(g_input):
input_name = forward_op.input[input_index]
input_version = in_versions[input_name]
if not g:
continue
if type(g) is GradientSlice:
if str(g.indices) not in locally_generated_blobs and \
str(g.values) not in locally_generated_blobs:
self.gradient_generators[input_name][input_version].append(
SparseGradGenMeta(None, 0, None, 0, g, forward_op.device_option))
else:
if str(g) not in locally_generated_blobs:
self.gradient_generators[input_name][input_version].append(
GradGenMeta(None, 0, g, forward_op.device_option))
# Finally, for the gradients specified in g_input, we update the
# gradient frontier to reflect the input versions that the gradients
# correspond to.
for i, g in enumerate(g_input):
if g is not None:
input_name = forward_op.input[i]
input_version = in_versions[input_name]
self.gradient_frontier[input_name] = input_version
def _GetSumOpOutputName(self, generator, input_name):
def remove_suffix(s, suffix):
if s.endswith(suffix):
return s[:-len(suffix)]
return s
for g in generator:
if type(g) is GradGenMeta:
grad_op, idx, _, _ = g
if grad_op:
return grad_op.output[idx]
else:
assert(type(g) is SparseGradGenMeta)
op_i, idx_i, op_v, idx_v, _, _ = g
if op_i:
return remove_suffix(op_i.output[idx_i], '_indices')
if op_v:
return remove_suffix(op_v.output[idx_v], '_values')
return input_name + '_grad'
IS_AUTO_GEN_SUM_OPS_TAG = "is_auto_gen_sum_ops"
ONLY_KEEP_IS_AUTO_GEN_SUM_OPS_TAG = "only_keep_is_auto_gen_sum_ops_tag"
def _SetSumOpsDeviceOption(self, sum_ops, generators):
only_keep_is_auto_gen_sum_ops_tag = False
for generator in generators:
# we already checked that device options are consistent so we can just
# break after finding the first clear_info request
for extra_info in generator.device_option.extra_info:
if extra_info == "{}:1".format(IR.ONLY_KEEP_IS_AUTO_GEN_SUM_OPS_TAG):
only_keep_is_auto_gen_sum_ops_tag = True
break
if only_keep_is_auto_gen_sum_ops_tag:
# if we find that device_option in the generator that
# requires clear the extra info for the auto gen sum
# Then we will try to clear them and only leave the
# IS_AUTO_GEN_SUM_OPS_TAG
for op in sum_ops:
op.device_option.extra_info.extend([
"{}:1".format(IR.IS_AUTO_GEN_SUM_OPS_TAG)
])
else:
# we already checked that device options are consistent so we can just
# use the first one we find
for generator in generators:
for op in sum_ops:
op.device_option.CopyFrom(generator.device_option)
op.device_option.extra_info.extend([
"{}:1".format(IR.IS_AUTO_GEN_SUM_OPS_TAG)
])
break
def _DisambiguateGradOpOutput(self, grad_op, idx, cnt):
new_grad_output = (
'_' + grad_op.output[idx] + '_autosplit_{}'.format(cnt))
if grad_op.type == "If":
disambiguate_grad_if_op_output(grad_op, idx, new_grad_output)
else:
grad_op.output[idx] = new_grad_output
return grad_op.output[idx], cnt + 1
def _CheckSumOpsConflict(self, out_base_name, g):
if str(out_base_name) == str(g):
# TODO not sure what this message really means
raise RuntimeError(
'The gradient output of empty gradient op can not '
'be the same as the normal name of the current '
'input gradient.')
def _MakeDenseSumOps(self, generators, out_base_name):
sum_op_input = []
cnt = 0
assert len(generators) > 1
first_grad_op = True
for generator in generators:
grad_op, idx, g, _ = generator
assert(type(g) is not GradientSlice)
if grad_op:
if first_grad_op:
first_grad_op = False
out = grad_op.output[idx]
else:
out, cnt = self._DisambiguateGradOpOutput(grad_op, idx, cnt)
sum_op_input.append(out)
else:
self._CheckSumOpsConflict(out_base_name, g)
sum_op_input.append(str(g))
if out_base_name in sum_op_input:
# Sum inplace mode works only for the first input
# So we do a swap
idx = sum_op_input.index(out_base_name)
sum_op_input[0], sum_op_input[idx] = (
sum_op_input[idx], sum_op_input[0]
)
sum_ops = [CreateOperator(
"Sum",
[BlobReference(x) for x in sum_op_input],
BlobReference(out_base_name))]
return sum_ops, out_base_name
def _MakeSparseSumOps(self, generators, out_base_name):
indices_concat_input = []
values_concat_input = []
cnt_i = 0
cnt_v = 0
for generator in generators:
assert(type(generator) is SparseGradGenMeta)
op_i, idx_i, op_v, idx_v, g, _ = generator
if op_i:
out, cnt_i = self._DisambiguateGradOpOutput(op_i, idx_i, cnt_i)
indices_concat_input.append(out)
else:
self._CheckSumOpsConflict(out_base_name, g.indices)
indices_concat_input.append(g.indices)
if op_v:
out, cnt_v = self._DisambiguateGradOpOutput(op_v, idx_v, cnt_v)
values_concat_input.append(out)
else:
self._CheckSumOpsConflict(out_base_name, g.values)
values_concat_input.append(g.values)
indices_concat_output = out_base_name + '_indices_concat'
indices_concat_split = out_base_name + '_indices_concat_split'
values_concat_output = out_base_name + '_values_concat'
values_concat_split = out_base_name + '_values_concat_split'
# Sum the given sparse representations by simply concatenating the
# indices (resp. values) tensors together. We don't do any deduplication
# of indices at this point. This will be done as needed before the
# optimizer is called
sum_ops = [
CreateOperator(
"Concat",
[BlobReference(x) for x in indices_concat_input],
[BlobReference(x) for x in
[indices_concat_output, indices_concat_split]],
axis=0
),
CreateOperator(
"Concat",
[BlobReference(x) for x in values_concat_input],
[BlobReference(x) for x in
[values_concat_output, values_concat_split]],
axis=0
),
]
sum_op_output = GradientSlice(
indices=indices_concat_output,
values=values_concat_output,
)
return sum_ops, sum_op_output
def _MakeSumOps(self, input_name, input_version):
generators = self.gradient_generators[input_name][input_version]
out_base_name = self._GetSumOpOutputName(generators, input_name)
types = list(set(type(x) for x in generators))
assert(len(types) == 1)
if types[0] is GradGenMeta:
sum_ops, g = self._MakeDenseSumOps(generators, out_base_name)
else:
assert(types[0] is SparseGradGenMeta)
sum_ops, g = self._MakeSparseSumOps(generators, out_base_name)
self._SetSumOpsDeviceOption(sum_ops, generators)
return sum_ops, g
def _VerifyGradientGenerators(self, generator):
# (1) check if all gradients are of the same type. Aggregating a mix of
# sparse and dense gradients is not supported yet
if len({type(g) for g in generator}) > 1:
raise RuntimeError(
'Automatic aggregation of a mix of sparse and dense gradients '
'is not supported yet')
# If for all the operators that used the operator, none or only one
# produced the gradient, then no additional sum needs to be carried
# out.
if len(generator) < 2:
return False
all_gradient_names = []
all_device_options = []
for g in generator:
if g.device_option:
all_device_options.append(g.device_option)
if type(g) is GradGenMeta:
if g.grad_op:
all_gradient_names.append(g.gradient)
else:
assert(type(g) is SparseGradGenMeta)
if g.gradient.values:
all_gradient_names.append(g.gradient.values)
# Check if all grad op device options are the same.
if len(all_device_options) >= 2 and not all(
device_option_equal(d, all_device_options[0])
for d in all_device_options[1:]):
raise RuntimeError('Unexpected behavior: not all grad ops '
'have the same device option.')
return True
def DoGradientAccumulation(self, fwd_op_idx):
"""For each input name in the forward op, check if we will need to
add gradient accumulation. If so, do gradient accumulation and return
the list of gradient operators.
The criteria for doing gradient accumulation is:
(1) the specific input version has been used by multiple operators.
(2) the current fwd_op_idx is the first to use that input, i.e. in the
backward pass, is the last to optionally generate the gradient for
the op.
(3) For the operators that used the input, their gradient operators
have generated more than 1 gradient.
When accumulating operators, our current solution is to rename all the
created gradients with an internal intermediate name, and then add a
Sum() operator that adds up all the gradients. This may use more memory
due to intermediate storage, but is usually the fastest approach as one
can do one single sum for multiple intermediate gradients.
"""
forward_op, in_versions, out_versions = self.ssa[fwd_op_idx]
additional_sum_ops = []
grad_map = {}
for _i, input_name in enumerate(set(forward_op.input)):
input_version = in_versions[input_name]
input_usage = self.input_usages[input_name][input_version]
if (len(input_usage) <= 1 or fwd_op_idx != input_usage[0]):
# We do not need to do gradient accumulation yet.
continue
generator = self.gradient_generators[input_name][input_version]
try:
if not self._VerifyGradientGenerators(generator):
continue
except RuntimeError as err:
raise RuntimeError(
"Gradients for param ''{}'' failed to verify: {}".format(
input_name,
err
)
)
# Finally, let's create the sum operator.
sum_ops, g = self._MakeSumOps(input_name, input_version)
additional_sum_ops.extend(sum_ops)
grad_map[input_name] = g
return additional_sum_ops, grad_map
def _AppendAutoGradGenerator(self, y, grad, autograd_op):
# Gradient here is not sparse as it was generated by
# a ConstantFill operator. Autogeneration for sparse gradients is
# not supported
generator = GradGenMeta(
autograd_op, 0 if autograd_op else None, str(grad),
autograd_op.device_option)
self.gradient_generators[str(y)][self.frontier[str(y)]].append(
generator)
AUTOGEN_GRAD_SUFFIX = "_autogen_grad"
def _GetInitGradients(self, ys):
input_to_grad = {}
gradient_ops = []
for y, g in viewitems(ys):
autograd_op = None
if g is None:
autograd_op = CreateOperator(
"ConstantFill", [y], [str(y) + IR.AUTOGEN_GRAD_SUFFIX],
value=1.0)
gradient_ops.append(autograd_op)
g = autograd_op.output[0]
# Since the C++ gradient registry does not have notion of
# NameScopes, we will convert all references to strings.
input_to_grad[str(y)] = (
GradientSlice(str(g[0]), str(g[1]))
if isinstance(g, GradientSlice) else str(g))
# Autogenerated gradients are assumed to be provided for the last
# input version
if autograd_op is not None:
self._AppendAutoGradGenerator(y, g, autograd_op)
return input_to_grad, gradient_ops
def _GenerateGradientsForForwardOp(
self, forward_op_idx, input_to_grad):
new_input_to_grad = {}
gradient_ops = []
forward_op, in_versions, out_versions = self.ssa[forward_op_idx]
g_output = list(
input_to_grad.get(name, None) for name in forward_op.output)
if not all(g is None for g in g_output) or (
forward_op.type == "ZeroGradient"):
gradient_ops, g_input = GradientRegistry.GetGradientForOp(
forward_op, g_output)
# Check if the gradient operators are legal, and update
# gradient_generators and gradient_frontier
self.BuildGradientGenerators(
forward_op_idx, gradient_ops, g_output, g_input)
# Record the gradient map to all_input_to_grad.
for name, grad in zip(forward_op.input, g_input):
# Do not overwrite an existing gradient with a None
# unless the input is also an output of the op, since
# we update the blob version when blob is output of an
# operator.
if grad is not None or \
name not in input_to_grad or \
name in list(forward_op.output):
new_input_to_grad[name] = grad
return new_input_to_grad, gradient_ops
def GetBackwardPass(self, ys):
"""Gets the backward pass that computes the derivatives of given blobs.
Inputs:
ys: a list or a dictionary specifying what blobs we want to compute
derivatives of. If the input is a list, we will automatically
generate their gradients with all-one values; if the input is a
dictionary, for any dictionary entries that are not None, we will
take the corresponding blobs as their gradients; for all those
that are None, we will auto-fill them with 1.
"""
if isinstance(ys, list):
ys = dict((y, None) for y in ys)
elif not isinstance(ys, dict):
raise TypeError("ys should either be a list or a dict.")
# Set the gradient frontier with the initialized external
# gradients.
for y in viewkeys(ys):
self.gradient_frontier[y] = self.frontier[y]
self.input_usages[str(y)][self.frontier[str(y)]].append(
len(self.ssa))
all_input_to_grad, all_gradient_ops = self._GetInitGradients(ys)
# (2) Now, after having the virtual play above, we now play the ops
# backwards, creating the gradients along the path. Note that although
# we are playing it backwards, we cannot refer to variables that are
# at a version older than current_versions because it is already been
# overwritten.
for forward_op_idx in reversed(range(len(self.ssa))):
input_to_grad, gradient_ops = self._GenerateGradientsForForwardOp(
forward_op_idx, all_input_to_grad)
all_input_to_grad.update(input_to_grad)
all_gradient_ops += gradient_ops
# If there are multiple use blobs, do gradient accumulation.
additional_sum_ops, grad_map = self.DoGradientAccumulation(
forward_op_idx)
# This line is so that if in an accumulation some of the operators
# have not produced gradients, they still do not overwrite the
# general all_input_to_grad map.
all_input_to_grad.update(grad_map)
all_gradient_ops += additional_sum_ops
# (3) Post-processing.
# After we have done computation for each op, we now have the gradient
# operators ready. For the output map, we will convert everything to
# BlobReferences for easier handling in python.
all_input_to_grad_out = {}
for key, val in viewitems(all_input_to_grad):
if val is not None:
if (isinstance(val, string_types) or
isinstance(val, binary_type)):
grad_out = BlobReference(val)
else:
grad_out = GradientSlice(BlobReference(val[0]),
BlobReference(val[1]))
all_input_to_grad_out[BlobReference(key)] = grad_out
return all_gradient_ops, all_input_to_grad_out
class GradientRegistry(object):
"""GradientRegistry holds the mapping from operators to their gradients."""
gradient_registry_ = {}
@classmethod
def RegisterGradient(cls, op_type):
"""A decorator for registering gradient mappings."""
def Wrapper(func):
cls.gradient_registry_[op_type] = func
return func
return Wrapper
@classmethod
def _GetGradientForOpCC(cls, op_def, g_output):
# TODO(tulloch) - Propagate GradientWrapper up through the stack.
def from_untyped(grad):
if grad is None:
w = C.GradientWrapper()
assert w.is_empty()
return w
try:
(indices, values) = grad
w = C.GradientWrapper()
w.indices = indices
w.values = values
assert w.is_sparse()
return w
except ValueError:
w = C.GradientWrapper()
w.dense = grad
assert w.is_dense()
return w
g_output = [from_untyped(grad) for grad in g_output]
grad_defs_str, g_input = C.get_gradient_defs(
op_def.SerializeToString(), g_output)
def to_untyped(grad_wrapper):
if grad_wrapper.is_empty():
return None
if grad_wrapper.is_sparse():
return GradientSlice(grad_wrapper.indices, grad_wrapper.values)
assert grad_wrapper.is_dense()
return grad_wrapper.dense
g_input = [to_untyped(grad_wrapper) for grad_wrapper in g_input]
grad_defs = []
for grad_def_str in grad_defs_str:
grad_def = caffe2_pb2.OperatorDef()
grad_def.ParseFromString(grad_def_str)
grad_defs.append(grad_def)
return grad_defs, g_input
@classmethod
def GetGradientForOp(cls, op, g_output):
try:
gradient_ops, g_input = cls._GetGradientForOpCC(op, g_output)
except Exception as e:
# Not supported in C++; will try python registration next.
if op.type in cls.gradient_registry_:
gradient_ops, g_input = cls.gradient_registry_[op.type](
op, g_output
)
else:
raise Exception(
"Exception when creating gradient for [{}]:{}.\nOp: \n{}".
format(op.type, e, str(op))
)
if gradient_ops is None:
return [], g_input
if type(gradient_ops) is not list:
gradient_ops = [gradient_ops]
return gradient_ops, g_input
@classmethod
def GetBackwardPass(cls, operators, ys, ys_generate_gradient=False):
"""Gets the backward pass for the list of operators.
Args:
operators: a list of operators constituting the forward pass.
ys: a list or a dictionary specifying what blobs we want to compute
derivatives of. If the input is a list, we will automatically
generate their gradients with all-one values; if the input is a
dictionary, for any dictionary entries that are not None, we'll
take the corresponding blobs as their gradients; for all those
that are None, we will auto-fill them with 1.
Returns:
gradient_ops: a list of gradient operators to run.
all_input_to_grads: a map from input to their corresponding
gradients.
"""
ir = IR(operators)
return ir.GetBackwardPass(ys)
GradientRegistry.RegisterGradient('Do')(gen_do_gradient)
GradientRegistry.RegisterGradient('If')(gen_if_gradient)
GradientRegistry.RegisterGradient('While')(gen_while_gradient)
def get_ssa(net, blob_versions=None):
"""
Given a net, return a structure containing the version of each input and
output blob used by each operator.
Args:
net: either a Net or a NetDef
blob_versions: (optional) map with current version number for given
blob names. If not provided or blob not found, start
from version 0.
Returns:
Tuple (ssa, blob_versions)
ssa: list of tuples (versioned_inputs, versioned_outputs)
for each op in the net. A versioned input is a tuple
(blob_name, version).
blob_versions: updated map with latest version of each blob found in
the net.
"""
proto = net.Proto() if isinstance(net, Net) else net
assert isinstance(proto, caffe2_pb2.NetDef)
if blob_versions is None:
blob_versions = {}
if isinstance(net, list):
return [get_ssa(n, blob_versions) for n in net], blob_versions
for i in proto.external_input:
if i not in blob_versions:
blob_versions[str(i)] = 0
ssa = []
for op in proto.op:
if not proto.external_input:
for i in op.input:
if i not in blob_versions:
blob_versions[i] = 0
inputs = [(str(i), blob_versions.get(str(i), 0)) for i in op.input]
for o in op.output:
blob_versions[str(o)] = blob_versions.get(str(o), 0) + 1
outputs = [(str(o), blob_versions[str(o)]) for o in op.output]
ssa.append((inputs, outputs))
return ssa, blob_versions
def get_undefined_blobs(ssa):
"""
Given a ssa in the format produced by get_ssa(), return a set of blobs that
are used before they are defined, which corresponds to inputs at version 0.
"""
undef_blobs = set()
for inputs, _outputs in ssa:
undef_blobs |= set(name for (name, ver) in inputs if ver == 0)
return undef_blobs
def get_output_producers(ssa):
"""
Given a ssa in the format produced by get_ssa(), returns a map from
versioned blob into the operator index that produces that version of
the blob. A versioned blob is a tuple (blob_name, version).
"""
producers = {}
for i, (_inputs, outputs) in enumerate(ssa):
for o in outputs:
producers[o] = i
return producers
def get_op_ids_in_path(ssa, blob_versions, inputs, outputs):
"""
Given a ssa and blob_versions as produced by get_ssa(), returns the list
of op indices that are necessary in order to generate the blobs in
`outputs`, given blobs in `inputs`.
Consider that the `inputs` are given in their latest version.
"""
inputs_set = set((str(i), blob_versions[str(i)]) for i in inputs)
producers = get_output_producers(ssa)
queue = [(str(o), blob_versions[str(o)]) for o in outputs]
used_op_ids = set()
while len(queue) > 0:
o = queue.pop()
if (o not in inputs_set) and (o in producers):
op_id = producers[o]
if op_id not in used_op_ids:
used_op_ids |= {op_id}
inputs, _ = ssa[op_id]
queue.extend(inputs)
return sorted(used_op_ids)
def recurrent_network_op_remap(op, prefix, blob_remap):
"""
Parameters
----------
op : Caffe2 operator (RecurrentNetworkOp or RecurrentNetworkGradientOp).
prefix: this argument is not used in this function, just for legacy support.
blob_remap : Dictionary that represents the map from old blob name to new.
Updates blob names in arguments of RecurrentNetworkOp and
RecurrentNetworkGradientOp to conform to cloned input and output of both
operators and also makes sure names of locally generated blobs in arguments
have the same prefix as the input and output of the operators.
"""
def get_remapped_str(blob_str):
if isinstance(blob_str, binary_type):
blob_str = blob_str.decode('utf-8')
return blob_remap.get(blob_str, blob_str).encode('utf-8')
for argument in op.arg:
if len(argument.strings) > 0:
for i in range(len(argument.strings)):
argument.strings[i] = get_remapped_str(argument.strings[i])
elif argument.name == 'timestep':
argument.s = get_remapped_str(argument.s)
elif argument.name.endswith('step_net'):
# argument is a proto
remap_proto(argument, blob_remap)
def control_op_remap(op, prefix, blob_remap):
net_arg_names = []
if op.type == "If" or op.type == "AsyncIf":
net_arg_names = ['then_net', 'else_net']
else:
net_arg_names = ['loop_net', 'cond_net']
for argument in op.arg:
if argument.name in net_arg_names:
assert argument.n, \
"Expected non empty net in " + op.type + "'s " + argument.name + " argument"
subnet = Net(argument.n)
remapped_subnet = subnet.Clone(
name=(subnet._net.name if subnet._net.name else '') + '_remapped',
blob_remap=blob_remap)
argument.n.CopyFrom(remapped_subnet.Proto())
DEFAULT_REMAP_FUNCS = {
'RecurrentNetwork': recurrent_network_op_remap,
'RecurrentNetworkGradient': recurrent_network_op_remap,
'If': control_op_remap,
'While': control_op_remap,
'AsyncIf': control_op_remap,
}
def remap_proto(argument, blob_remap):
subnet = Net(argument.n)
cloned_sub_net = subnet.Clone(
'cloned_sub_net',
blob_remap,
)
argument.n.CopyFrom(cloned_sub_net.Proto())
def clone_and_bind_net(net, name, prefix, blob_remap=None, inputs=None,
keep_schema=True):
"""
Clone the given Net, binding its input schema to the given `inputs` record.
Blob names defined by the net are prepended with the given `prefix`.
Args:
net: the net to clone
name: the name of the new net
prefix: the prefix to append to local blobs
blob_remap: (optional) dict with additional blob name remapping.
inputs: (optional) input record that will provide actual input
values for the cloned net. Must be compatible with the
net's input schema or be a strict superset of it
keep_schema: by default (True), the original schema will be kept and
remapped accordingly. otherwise, the schema will be set as
inputs or left empty if inputs is not given.
Returns:
Tuple (cloned_net, blob_remap)
clone_net: the cloned Net
blob_remap: a map from original blob names into remapped blob names
"""
from caffe2.python import schema
assert isinstance(net, Net)
if blob_remap is None:
blob_remap = {}
if inputs is not None:
assert isinstance(inputs, schema.Field)
original = net.input_record()
assert original is not None
# TODO(azzolini): improve schema type checking
diff = set(original.field_names()) - set(inputs.field_names())
assert len(diff) == 0, (
"Schemas don't match, extra fields {diff} found in the net {name}. "
"original: {original}; inputs: {inputs}"
.format(
diff=diff, name=net.Name(), original=original.field_names(),
inputs=inputs.field_names()
)
)
original_mapping = dict(zip(original.field_names(),
original.field_blobs()))
for fn, fb in zip(inputs.field_names(), inputs.field_blobs()):
if fn in original_mapping:
blob_remap[str(original_mapping[fn])] = str(fb)
proto = net.Proto()
ssa, blob_versions = get_ssa(proto)
undef_blobs = get_undefined_blobs(ssa)
for blob in viewkeys(blob_versions):
if blob in blob_remap:
continue
elif blob in undef_blobs:
blob_remap[blob] = blob
else:
blob_remap[blob] = prefix + blob
cloned_net = net.Clone(name, blob_remap, keep_schema=keep_schema)
if not keep_schema and inputs:
cloned_net.set_input_record(inputs)
return cloned_net, blob_remap
def _get_blob_ref(blob_name_or_ref):
return (
blob_name_or_ref if isinstance(input, BlobReference)
else BlobReference(blob_name_or_ref)
)
def _recover_record_by_prefix(names, prefix=''):
"""
Tries to recover record by taking a subset of blob names with
a given prefix name and interpreting them as schema column names
"""
from caffe2.python import schema
column_names = [name[len(prefix):] for name in names
if name.startswith(prefix)]
if not column_names:
return None
return schema.from_column_list(
column_names,
col_blobs=[_get_blob_ref(prefix + name) for name in column_names])
class Net(object):
_net_names_used = set()
operator_registry_ = {}
@staticmethod
def current_prefix():
from caffe2.python.net_builder import NetBuilder
builder = NetBuilder.current(required=False)
return builder.name if builder else ''
@staticmethod
def _get_next_net_name(basename):
name = basename = '/'.join(
x for x in [Net.current_prefix(), basename] if x
)
next_idx = 1
while name in Net._net_names_used:
name = basename + '_' + str(next_idx)
next_idx += 1
Net._net_names_used |= set([name])
return name
def __init__(self, name_or_proto, inplace=False):
"""
Create a Net.
Args:
name_or_proto: If a NetDef is provided, clone it (or take ownership,
depending on the value of `inplace`). Otherwise,
create an empty net with the given name.
inplace: If a NetDef is provided, take ownership when `inplace` is True;
otherwise, clone it.
"""
self._input_record = None
self._output_record = None
# Register blobs so that it's guaranteed that different calls to
# NextBlob/NextScopedBlob always return blobs with different names
self._registered_blob_names = set()
self._recreate_lookup_tables = False
self._op_outputs = set()
self._external_input_map = set()
self._attr_dict = defaultdict(list)
if type(name_or_proto) is caffe2_pb2.NetDef:
proto = name_or_proto
# We are initializing a network by a NetDef. In this case, we will
# initialize our network with the given netdef.
if inplace:
self._net = proto
else:
self._net = caffe2_pb2.NetDef()
self._net.CopyFrom(proto)
existing_outputs = [list(op.output) for op in self._net.op]
self._external_input_map.update(list(self._net.external_input))
# Set the next name index properly.
existing_names = set()
for op in self._net.op:
existing_names.update(list(op.input))
for output in existing_outputs:
existing_names.update(output)
for outs in existing_outputs:
self._op_outputs.update(outs)
prefix_len = len(self._net.name + '_blob_')
autogen_indices = []
for s in existing_names:
if s.startswith(self._net.name + '_blob_'):
try:
autogen_indices.append(int(s[prefix_len]))
except ValueError:
pass
if len(autogen_indices):
self._next_name_index = max(autogen_indices) + 1
else:
self._next_name_index = 0
name = self._net.name
else:
name = name_or_proto
self._net = caffe2_pb2.NetDef()
self._next_name_index = 0
# make sure that this net name hasn't been used before
self._net.name = Net._get_next_net_name(name)
# a map between prefix and ID for fast generation of blob names
self._next_blob_name_ids = {}
def AppendNet(self, net, device_option=None):
assert isinstance(net, Net)
for i in net.Proto().external_input:
if (
i not in self.Proto().external_input and
i not in self._op_outputs
):
self.Proto().external_input.append(i)
self.Proto().external_output.extend(
[
o for o in net.Proto().external_output
if o not in self.Proto().external_output
]
)
ops = net.Proto().op
if device_option is not None:
ops = [copy.deepcopy(op) for op in ops]
for op in ops:
op.device_option.CopyFrom(device_option)
for op in ops:
if op.type == "RecurrentNetwork":
for arg in op.arg:
if arg.name.endswith('step_net'):
for step_op in arg.n.op:
step_op.device_option.CopyFrom(device_option)
self._ExtendOps(ops)
return self
def LogInfo(self, *msg_or_blobs):
for msg_or_blob in msg_or_blobs:
if not isinstance(msg_or_blob, BlobReference):
blob = self.GivenTensorStringFill(
[], self.NextName('log'),
shape=[], values=[msg_or_blob])
else:
blob = msg_or_blob
self.Print(blob, [])
def add_attribute(self, name, obj):
"""
Add `obj` to the list of attributes in this net under the given `name`.
Attributes are user-defined objects and have no pre-defined semantics.
"""
self._attr_dict[name].append(obj)
def get_attributes(self, name):
"""
Returns the list of attributes in this net for a given `name`.
Attributes are user-defined objects added with `add_attribute'.
"""
return self._attr_dict.get(name, [])
def set_rand_seed(self, seed=100, sequence_seed=True, seed_on_op_def=False):
"""
Adds a random seed to each op in the net.
If sequence_seed is set, the i-th op has rand_seed=`seed + i`
If seed_on_op_def is set, the op rand_seed=hash(str(op))
sequence_seed and seed_on_op_def cannot be both set to True.
"""
assert not (sequence_seed and seed_on_op_def), (
'sequence_seed and seed_on_op_def cannot be both set to True.')
for i, op in enumerate(self.Proto().op):
if sequence_seed:
curr_seed = seed + i
elif seed_on_op_def:
curr_seed = hash(str(op) + str(seed)) % np.iinfo(np.uint32).max
else:
curr_seed = seed
op.device_option.random_seed = curr_seed
def Name(self):
return self._net.name
def __str__(self):
return self.Name()
def Const(self, array, blob_out=None, dtype=None):
if isinstance(array, bool):
return self.ConstantFill(
[],
blob_out or 1,
dtype=DataType.BOOL,
value=array)
if dtype is None:
array = np.array(array)
else:
array = np.array(array, dtype=dtype)
def do_set(operator):
return operator(
[],
blob_out or 1,
shape=array.shape,
values=array.flatten().tolist())
if array.dtype == np.int32:
return do_set(self.GivenTensorIntFill)
elif array.dtype == np.int64:
return do_set(self.GivenTensorInt64Fill)
elif array.dtype == np.str:
return do_set(self.GivenTensorStringFill)
elif array.dtype == np.bool:
return do_set(self.GivenTensorBoolFill)
else:
return do_set(self.GivenTensorFill)
def BlobIsDefined(self, blob):
"""
Returns true if the given BlobReference is produced as output of
an operator in this net, or if it is provided as an external input.
"""
if self._recreate_lookup_tables:
self._RecreateLookupTables()
name = str(blob)
return (name in self._op_outputs) or (name in self._external_input_map)
def UsesBlob(self, blob):
"""
Returns true iff the given BlobReference is used by any operator
or this net, or if it is one of the external inputs of the net.
"""
blob_name = str(blob)
for op in self._net.op:
for input in op.input:
if input == blob_name:
return True
return blob_name in self._external_input_map
def UsedBlobNames(self):
"""
Returns a set of blob names used in the net
"""
blob_names = set()
for op in self._net.op:
blob_names |= set(op.input)
blob_names |= set(op.output)
if self._net.external_input:
blob_names |= set(self._net.external_input)
if self._net.external_output:
blob_names |= set(self._net.external_output)
return blob_names
def GetBlobRef(self, blob_name):
"""
Given the name of a blob produced by this net, return a BlobReference
to it. If the blob is not produced by any op in this net,
raises KeyError.
"""
blob_name = str(blob_name)
if not self.BlobIsDefined(blob_name):
raise KeyError('Net does not define blob %s' % blob_name)
return BlobReference(blob_name, self)
def Clone(
self,
name,
blob_remap=None,
op_id_mask=None,
remap_funcs=None,
keep_schema=True,
update_external_list=False,
):
"""
Clone this net.
Args:
name: name of the cloned net
blob_remap: optional map with list of blob names to replace
op_id_mask: optional list of operator indices to include in
the cloned net. If not provided, all ops are included.
"""
orig_remap_funcs = {} if remap_funcs is None else remap_funcs
# by default we want to put RecurrentNetworkOp and
# RecurrentNetworkGradientOp into remap_funcs, as these two operators
# also take blobs and proto into the arguments.
remap_funcs = DEFAULT_REMAP_FUNCS.copy()
remap_funcs.update(orig_remap_funcs)
proto = self._net
new_proto = caffe2_pb2.NetDef()
new_proto.CopyFrom(proto)
new_proto.name = name
if blob_remap is None:
blob_remap = {}
if op_id_mask is None:
op_id_mask = list(range(0, len(proto.op)))
def get_remapped_str(blob):
blob_str = str(blob)
return str(blob_remap.get(blob_str, blob_str))
def remap_list(proto_list):
new_list = [get_remapped_str(b) for b in proto_list]
del proto_list[:]
proto_list.extend(new_list)
def remap_op(op):
new_op = caffe2_pb2.OperatorDef()
new_op.CopyFrom(op)
remap_list(new_op.input)
remap_list(new_op.output)
if new_op.type in remap_funcs:
remap_funcs[new_op.type](
new_op,
(name + '/') if name else '',
blob_remap,
)
return new_op
del new_proto.op[:]
new_proto.op.extend([remap_op(proto.op[op_id]) for op_id in op_id_mask])
remap_list(new_proto.external_input)
remap_list(new_proto.external_output)
new_net = Net(new_proto)
if keep_schema:
from caffe2.python import schema
if self._input_record:
new_net._input_record = schema.from_blob_list(
self._input_record,
[
BlobReference(get_remapped_str(blob), net=new_net)
for blob in self._input_record.field_blobs()
],
)
if self._output_record:
new_net._output_record = schema.from_blob_list(
self._output_record,
[
BlobReference(get_remapped_str(blob), net=new_net)
for blob in self._output_record.field_blobs()
],
)
new_net._attr_dict.update(self._attr_dict)
if update_external_list:
# external input list
existing_outputs = set()
used_outputs = set()
del new_net.Proto().external_input[:]
del new_net.Proto().external_output[:]
for op in new_net.Proto().op:
for ib in op.input:
if ib not in existing_outputs:
new_net.Proto().external_input.extend([ib])
else:
used_outputs.add(ib)
for ob in op.output:
existing_outputs.add(ob)
# external outputs
for ob in existing_outputs:
if ob not in used_outputs:
new_net.Proto().external_output.extend([ob])
return new_net
def ClonePartial(self, name, inputs, outputs, remap_funcs=None):
"""
Clone this net, including only ops that are necessary in order to
compute `outputs` given `inputs`. Return references to the cloned
outputs. Internal blobs (blobs that are produced and consumed inside
the net but not used as outputs) will be remapped to avoid name
conflict.
Args:
name: the name of the cloned net
inputs: map where the keys correspond to BlobReferences in the
original net, and the values correspond to external inputs
in the partially cloned net. If `inputs` is a list, don't
remap input names.
outputs: outputs to be produced by the cloned net.
Returns:
Tuple (new_net, new_outputs)
new_net: a new Net object.
new_outputs: list of BlobReferences corresponding to the
outputs produced by new_net.
"""
input_is_pair_list = isinstance(inputs, list) and all(
isinstance(i, tuple) and len(i) == 2 for i in inputs)
inputs = (
inputs if isinstance(inputs, (dict, OrderedDict)) else
OrderedDict(inputs) if input_is_pair_list else
OrderedDict(zip(inputs, inputs)))
for output in outputs:
assert self.BlobIsDefined(output), "{} is not defined".format(output)
input_names = {str(k): str(v) for k, v in viewitems(inputs)}
output_names = [str(o) for o in outputs]
proto = self._net
blob_versions = {str(i): 0 for i in inputs}
ssa, blob_versions = get_ssa(proto, blob_versions)
used_op_ids = get_op_ids_in_path(ssa, blob_versions, inputs, outputs)
disallowed_op_ids = get_op_ids_in_path(ssa, blob_versions, [], inputs)
assert len(set(used_op_ids) & set(disallowed_op_ids)) == 0, (
'Cannot partially clone net: some of the ops required would ' +
'generate the given input.')
sub_ssa = [op for i, op in enumerate(ssa) if i in used_op_ids]
undef_blobs = get_undefined_blobs(sub_ssa) - set(viewkeys(input_names))
prefix = (name + '/') if name else ''
def remap(blob_name):
if blob_name in input_names:
return input_names[blob_name]
elif blob_name in undef_blobs:
return blob_name
else:
return prefix + blob_name
blob_mapping = {b: remap(b) for b in viewkeys(blob_versions)}
new_net = self.Clone(name, blob_mapping, used_op_ids, remap_funcs)
new_in = [
blob_mapping[i] for i in viewkeys(input_names)] + list(undef_blobs)
new_out = [blob_mapping[o] for o in output_names]
del new_net.Proto().external_input[:]
new_net.Proto().external_input.extend(new_in)
new_net._external_input_map = set(list(new_in))
del new_net.Proto().external_output[:]
new_net.Proto().external_output.extend(new_out)
return new_net, [new_net.GetBlobRef(o) for o in new_out]
def Proto(self):
self._InvalidateLookupTables()
return self._net
def insert_op_at_idx(self, op, op_idx):
r""" inserting operator at index. Will update external blob list.
"""
assert op_idx >= 0
temp_ops = self.Proto().op[op_idx:]
del self.Proto().op[op_idx:]
self.Proto().op.extend([op])
self.Proto().op.extend(temp_ops)
self.external_outputs.extend(op.output)
self.external_inputs.extend(op.input)
def reroute_tensor(self, tensor, new_producer, can_modify=None):
r""" reroute tensor to new_producer. And feed new tensor to consumers
and interseciton with can_modify if provided.
Inputs:
tensor: str or blob_reference the tensor to reroute
new_producer: an op takes in tensor gives new_tesnor
can_modify: a list/set of operators that consumes tensor and can be
modified
Returns:
reroute_cnt: how many consumer op has been changed
Note: assume no inplace blob in net
"""
def _find_tensor_input_op(tensor):
if tensor in self.external_inputs:
op_idx = -1
else:
assert tensor in new_producer.input, \
"new producer {} is not taking in {}".format(
new_producer.type, tensor)
# assuming that the net has no inplace blob
op_idx = -2
for index, op in enumerate(self.Proto().op):
if_found = False
for o in op.output:
if o == tensor:
# tensor should not be modified yet.
if_found = True
op_idx = index
break
if if_found:
break
return op_idx
# the place to inject new_producer is not just determined by tensor
op_idx = max(_find_tensor_input_op(t) for t in new_producer.input)
self.insert_op_at_idx(new_producer, op_idx + 1)
new_tensor = new_producer.output[0]
# modify external outputs
if tensor in self.external_outputs:
new_list = [new_tensor if b == tensor else b for b in self.external_outputs]
del self.Proto().external_output[:]
self.Proto().external_output.extend(new_list)
# modify consumers
reroute_cnt = 0
if can_modify:
for op in self.Proto().op:
if op in can_modify: # this is not necessarily true
remap_input(op, {tensor: new_tensor})
reroute_cnt = reroute_cnt + 1
return reroute_cnt
def PopulateProtoWithFileName(self):
net_tb = workspace.operator_tracebacks.get(self.Name(), None)
if net_tb is not None:
for idx, op in enumerate(self.Proto().op):
if idx in net_tb:
op.name = ':'.join(map(str, net_tb[idx][0]))
def NextScopedBlob(self, prefix='unnamed'):
"""Return the blob that has not been defined or registered in the
current net. It returns `ScopedBlobReference(prefix)`, if it's valid,
otherwise `ScopedBlobReference(prefix) + '_auto_' + ?`. Different calls
is guaranteed to return blob with different names.
"""
output_blob_base = ScopedName(prefix)
return self.NextBlob(output_blob_base)
def NextBlob(self, prefix='unnamed'):
"""Return the blob that has not been defined or registered in the
current net. It returns `BlobReference(prefix)`, if it's valid,
otherwise `BlobReference(prefix) + '_auto_' + ?`. Different calls
is guaranteed to return blob with different names."""
output_blob_base = BlobReference(prefix)
output_blob = output_blob_base
index = 0
while str(output_blob) in self._registered_blob_names or (
self.BlobIsDefined(output_blob)):
output_blob = output_blob_base + '_auto_' + str(index)
index += 1
self._registered_blob_names.add(str(output_blob))
return output_blob
def NextName(self, prefix=None, output_id=None):
"""Returns the next name to be used, if you do not want to explicitly
name your blob. [Deprecated, use NextBlob, NextScopedBlob instead]"""
if prefix:
output_name_base = self._net.name + '/' + prefix
output_name = output_name_base
if output_id is not None:
output_name += ':' + str(output_id)
key = output_name
index = self._next_blob_name_ids.get(key, 2)
while self.BlobIsDefined(str(ScopedBlobReference(output_name))):
output_name = output_name_base + '_' + str(index)
if output_id is not None:
output_name += ':' + str(output_id)
index += 1
self._next_blob_name_ids[key] = index
else:
output_name = self._net.name + '_blob_' + str(self._next_name_index)
self._next_name_index += 1
return str(output_name)
def _ExtendOps(self, new_ops):
self._net.op.extend(new_ops)
for op in new_ops:
self._op_outputs.update([text_type(o) for o in op.output])
def _CheckLookupTables(self):
'''
Called from unit tests to validate the internal lookup tables
match the protobuf contents.
'''
test_op_outputs = set()
for op in self._net.op:
for o in op.output:
test_op_outputs.add(o)
test_external_inp = set()
for inp in self._net.external_input:
test_external_inp.add(inp)
assert test_op_outputs.difference(self._op_outputs) == set()
assert test_external_inp.difference(self._external_input_map) == set()
def _InvalidateLookupTables(self):
self._recreate_lookup_tables = True
def _RecreateLookupTables(self):
self._op_outputs = set()
for op in self._net.op:
for o in op.output:
self._op_outputs.add(o)
self._external_input_map = set()
for inp in self._net.external_input:
self._external_input_map.add(inp)
self._recreate_lookup_tables = False
def AddGradientOperators(self, ys, skip=0):
"""Add the gradient for operators in the net.
Inputs:
ys: a list or a dictionary specifying what blobs we want to compute
derivatives of. If the input is a list, we will automatically
generate their gradients with all-one values; if the input is a
dictionary, for any dictionary entries that are not None, we will
take the corresponding blobs as their gradients; for all those
that are None, we will auto-fill them with 1.
skip: skips the first n operators. This is provided mainly because a
lot of nets may use the first few operators for data generation
like stuff which really do not need to have gradients.
Outputs:
returns a map from the blob name in the input network to a blob
containing gradient or a GradientSlice in case of sparse gradient
Currently, this is hard-coded for float operators if there are branches
(i.e. a blob is used as input to multiple operators). This is because
the gradient accumulation (Sum) is float only right now.
"""
grad_ops, input_to_grad = GradientRegistry.GetBackwardPass(
self._net.op[skip:], ys)
# Check if in immediate mode: the grad_ops are actually being produced
# by C++ and bypasses the CreateOperator() call, so in immediate mode
# we will have to explicitly run them.
if workspace.IsImmediate():
for op in grad_ops:
workspace.RunOperatorImmediate(op)
self._ExtendOps(grad_ops)
return input_to_grad
def AddArgument(self, arg_name, arg_value):
self._net.arg.extend([utils.MakeArgument(arg_name, arg_value)])
def AddExternalInput(self, *inputs):
assert len(inputs) > 0
refs = []
input_name_set = set()
for input in inputs:
input_name = str(input)
assert (
input_name not in self._external_input_map
and input_name not in input_name_set
), ("Net already contains an input named %s" % input_name)
input_name_set.add(input_name)
for input in inputs:
input_name = str(input)
self._net.external_input.extend([input_name])
self._external_input_map.update([input_name])
refs.append(_get_blob_ref(input_name))
return refs[0] if len(refs) == 1 else refs
def AddExternalOutput(self, *outputs):
for output in outputs:
assert isinstance(output, BlobReference)
assert self.BlobIsDefined(output), "{} is not defined".format(output)
for output in outputs:
self.Proto().external_output.extend([str(output)])
def AddScopedExternalInputs(self, *inputs):
res = self.AddExternalInput(
* [ScopedBlobReference(b) for b in inputs]
)
if not isinstance(res, list):
res = [res]
return res
def AddScopedExternalOutputs(self, *outputs):
return self.AddExternalOutput(
* [ScopedBlobReference(b) for b in outputs]
)
# This returns a reference to the observer
def AddObserver(self, observer_type):
return C.add_observer_to_net(self._net.name, observer_type)
def RemoveObserver(self, observer):
C.remove_observer_from_net(self._net.name, observer)
def NumObservers(self):
return C.num_observers_on_net(self._net.name)
@property
def external_inputs(self):
return [_get_blob_ref(x) for x in self._net.external_input]
@property
def external_outputs(self):
return [_get_blob_ref(x) for x in self._net.external_output]
def set_input_record(self, input_record):
from caffe2.python import schema
assert self._input_record is None or (input_record.has_blobs() and
set(input_record.field_blobs()) ==
set(self._input_record.field_blobs())), (
'Input schema cannot be reset')
if not input_record.has_blobs():
with NameScope(self.Name()):
self._input_record = schema.NewRecord(self, input_record)
else:
self._input_record = input_record
for blob in self._input_record.field_blobs():
if not self.is_external_input(blob):
self.AddExternalInput(blob)
return self._input_record
def recover_input_record_by_prefix(self, prefix):
"""
Tries to recover input record by taking a subset of external_inputs with
a given prefix name and interpreting them as schema column names
"""
record = _recover_record_by_prefix(self._net.external_input, prefix)
if record:
self.set_input_record(record)
def set_output_record(self, record):
assert self._output_record is None or (record.has_blobs() and
set(record.field_blobs()) ==
set(self._output_record.field_blobs())), (
'Output schema cannot be reset')
for blob in record.field_blobs():
assert self.BlobIsDefined(blob), "{} is not defined in net {}".format(
blob,
self.Proto()
)
for blob in record.field_blobs():
if blob not in self.external_outputs:
self.AddExternalOutput(blob)
self._output_record = record
def recover_output_record_by_prefix(self, prefix):
"""
Tries to recover out record by taking a subset of external_outputs with
a given prefix name and interpreting them as schema column names
"""
record = _recover_record_by_prefix(self._net.external_output, prefix)
if record:
self.set_output_record(record)
def AppendOutputRecordField(self, field_name, record):
from caffe2.python import schema
assert self._output_record is not None, (
'Tried to append to missing output record'
)
for blob in record.field_blobs():
assert self.BlobIsDefined(blob), "{} is not defined".format(blob)
for blob in record.field_blobs():
self.AddExternalOutput(blob)
self._output_record = self._output_record + schema.Struct(
(field_name, record)
)
def input_record(self):
return self._input_record
def output_record(self):
return self._output_record
def AddExternalInputs(self, *inputs):
return self.AddExternalInput(*inputs)
def AddExternalOutputs(self, *outputs):
self.AddExternalOutput(*outputs)
def DeduplicateGradientSlices(self, g, aggregator='sum'):
assert isinstance(g, GradientSlice)
unique, remapping = self.Unique([g.indices], 2, engine='SparseHash')
if aggregator.lower() == 'sum':
new_g = self.UnsortedSegmentSum([g.values, remapping], 1)
elif aggregator.lower() == 'mean':
new_g = self.UnsortedSegmentMean([g.values, remapping], 1)
else:
raise ValueError('{} is not supported'.format(aggregator))
return GradientSlice(indices=unique, values=new_g)
@staticmethod
def _RunAllOnGPU(net, gpu_id=0, use_cudnn=False):
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = workspace.GpuDeviceType
device_option.device_id = gpu_id
net.device_option.CopyFrom(device_option)
if use_cudnn:
for op in net.op:
op.engine = "CUDNN"
# Move RecurrentNetwork operators on GPU as well
for op in net.op:
if op.type != "RecurrentNetwork":
continue
for arg in op.arg:
if arg.name == "step_net":
Net._RunAllOnGPU(arg.n, gpu_id, use_cudnn)
def RunAllOnGPU(self, gpu_id=0, use_cudnn=False):
"""A convenient function to run everything on the GPU."""
self._RunAllOnGPU(self._net, gpu_id, use_cudnn)
def RunAllOnMKL(self):
"""A convenient function to run everything using MKLDNN."""
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = caffe2_pb2.MKLDNN
self._net.device_option.CopyFrom(device_option)
def RunAllOnIDEEP(self):
"""A convenient function to run everything using IDEEP."""
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = caffe2_pb2.IDEEP
self._net.device_option.CopyFrom(device_option)
def _CreateAndAddToSelf(self, op_type, inputs, outputs=None, **kwargs):
"""A helper function to create an operator and add it to self.
"""
inputs = _RectifyInputOutput(inputs)
for input in inputs:
if not self.BlobIsDefined(input):
assert input.Net() != self
self.AddExternalInput(input)
if outputs is None:
# If we do not specify an output, we will assume that this op
# produces one output in this case.
outputs = self.NextName(prefix=op_type)
elif type(outputs) is int:
# In this case, we will auto-fill the given number of outputs
# with auto-generated names.
outputs = [
self.NextName(prefix=op_type, output_id=i)
for i in range(outputs)]
outputs = _RectifyInputOutput(outputs, net=self)
op = CreateOperator(op_type, inputs, outputs, **kwargs)
self._ExtendOps([op])
workspace.operator_tracebacks[self.Name()][
len(self._net.op) - 1] = _extract_stacktrace()
if len(op.output) == 0:
return
elif len(op.output) == 1:
return BlobReference(op.output[0], self)
else:
return tuple(BlobReference(o, self) for o in op.output)
def __getattr__(self, op_type):
if op_type.startswith('__'):
raise AttributeError('Attribute {} not found.'.format(op_type))
if not IsOperator(op_type) and not IsOperatorWithEngine(op_type, "CUDNN"):
raise AttributeError(
'Method ' + op_type + ' is not a registered operator.' +
' Did you mean: [' +
",".join(workspace.C.nearby_opnames(op_type)) + ']'
)
return lambda *args, **kwargs: self._CreateAndAddToSelf(
op_type, *args, **kwargs)
def __dir__(self):
TriggerLazyImport()
additional_methods = [
op
for op in _REGISTERED_OPERATORS
if '_ENGINE_' not in op]
return sorted(set(chain(
dir(type(self)),
viewkeys(self.__dict__),
additional_methods
)))
def Python(
self,
f,
grad_f=None,
python_func_type=None,
pass_workspace=False,
grad_output_indices=None,
grad_input_indices=None
):
"""
Registers and returns a python operator.
`f` and `grad_f` can be one of the following:
- a function with signature (inputs, outputs), where inputs and
outputs are a list of CPUTensor objects. This function will be
called from C++ everytime the operator is executed.
- a tuple (func, args, kwargs), here `func` is a callable, args is
an argument list, and kwargs is a dict list. The call:
f = func(*args, kwargs)
will be performed locally at node initialization time, on all of
the nodes of the job, returning `f`, a callable that will be used
as the python operator function to be called during Net execution.
This is to be used when using python operator in a distributed
context, and allows to create and keep local python state across
calls to the operator.
`python_func_type` is a type of an object that constructed as
python_func_type(f) and provides an implementation to forward and
backward functions. Its useful in such a case where users needs
a statefull PythonOp (ex: use autograd for computing grad_f).
If `pass_workspace` is True, the signature is changed to
(inputs, outputs, workspace) where `workspace` is the workspace the op
is going to run on. This is potentially dangerous (as the op can
manipulate the workspace directly), use on your own risk.
If a gradient function is specified (`grad_f`), by default its inputs
will be: (1) all inputs to `f`, (2) followed by all outputs of `f`, (3)
and then all gradient outputs of `f`. The outputs of `grad_f` will be
(by default) all gradient inputs to `f`. If a subset of the gradient
outputs or gradient inputs is desired instead, then the subsets can be
specified by providing `grad_output_indices` and/or `grad_input_indices`
which identify the indices of `f`'s inputs and outputs which have
gradients.
"""
assert(IsOperator('Python'))
def make_builder(t):
if not isinstance(t, tuple):
return ''
assert len(t) == 3, 'Expected builder tuple (func, args, kwargs)'
func, args, kwargs = t
normalized = (func, tuple(args), dict(kwargs))
return pickle.dumps(normalized)
f_builder = make_builder(f)
grad_f_builder = make_builder(grad_f)
assert (not grad_f) or ((not f_builder) == (not grad_f_builder)), (
'A tuple has to be passed to both f and grad_f or neither.')
core_kwargs = {}
if f_builder:
core_kwargs['pickled_builder'] = f_builder
core_kwargs['pickled_grad_builder'] = grad_f_builder
core_kwargs['pass_workspace'] = pass_workspace
else:
core_kwargs['token'] = _RegisterPythonImpl(
f, grad_f, python_func_type, pass_workspace=pass_workspace)
grad_output_indices = grad_output_indices or []
grad_input_indices = grad_input_indices or []
return lambda *args, **kwargs: self._CreateAndAddToSelf(
'Python',
grad_output_indices=grad_output_indices,
grad_input_indices=grad_input_indices,
*args,
**dict(chain(viewitems(kwargs), viewitems(core_kwargs)))
)
def is_external_input(self, blob):
if self._recreate_lookup_tables:
self._RecreateLookupTables()
name = str(blob)
return name in self._external_input_map
def extend_ops(self, new_ops):
return self._ExtendOps(new_ops)
def remap_input(op, blob_name_remapping):
new_list = [blob_name_remapping.get(b, b) for b in op.input]
del op.input[:]
op.input.extend(new_list)
def copy_func_between_devices(src, dst):
CPU = caffe2_pb2.CPU
is_src_gpu = IsGPUDeviceType(src.device_type)
is_dst_gpu = IsGPUDeviceType(dst.device_type)
if src.device_type == CPU and dst.device_type == CPU:
return None
if is_src_gpu and is_dst_gpu:
if src.device_id == dst.device_id:
return None
else:
def fun(net, *args, **kw):
with DeviceScope(dst):
return net.Copy(*args, **kw)
return fun
if is_src_gpu and dst.device_type == CPU:
def fun(net, *args, **kw):
with DeviceScope(src):
return net.CopyGPUToCPU(*args, **kw)
return fun
if src.device_type == CPU and is_dst_gpu:
def fun(net, *args, **kw):
with DeviceScope(dst):
return net.CopyCPUToGPU(*args, **kw)
return fun
raise ValueError('Non-supported devices: %s and %s' % (src, dst))
def device_equal(src, dst):
'''
We are using this fucntion instead of == operator because optional-value
comparison between empty device_options and {device_type:0, device_id:0}
returns not equal in some cases.
'''
return src.device_type == dst.device_type and src.device_id == dst.device_id
def update_placeholder_op_output(op, blob_to_device):
'''
Placeholder ops (for e.g. Recv) always runs on CPU. So ensure their
output blobs reside on CPU.
'''
outputs = []
for output in op.output:
if (output in blob_to_device and
blob_to_device[output].device_type != caffe2_pb2.CPU):
output += '_cpu'
outputs.append(output)
del op.output[:]
op.output.extend(outputs)
class RemapEntry:
def __init__(self, blob, device):
self.blob = blob
self.device = device
def __eq__(self, other):
return self.blob == other.blob and self.device == other.device
def __hash__(self):
return hash(self.blob + str(self.device))
def InjectCrossDeviceCopies(net, blob_to_device=None, blob_remap=None,
placeHolderOps=None):
'''
Injecting Copy functions between device within a net. Users can provide
a net with part of operators using different device_options. This method
will automatically create a new net with Copy ops inserted in it.
Inputs:
blob_to_device: If not None, it is a map of blobs and their device locations.
blob_remap: If not None, it is a map from a pair (blob, device) to
the name of the blob in the given device. Blobs found in this
map are assumed to be cached and don't need to be copied.
Outputs:
new_net: A new net with CopyCPUToGPU inserted with correct device option
required_external_to_device:
A mapping between unresolved external inputs and their
required device options.
Assumptions:
1. every external inputs of this net is already in blob_to_device!
2. if not, this function will use net device option
3. InferOpBlobDevices might fail to get the correct inference for ops like
EnsureCPUOutput that could take in input from multiple places.
'''
new_net = net.Clone(net._net.name + '_cross_device', keep_schema=True)
del new_net._net.op[:]
if blob_to_device is None:
blob_to_device = {}
# remapping of input blobs for each op.
if blob_remap is None:
blob_remap = {}
temp_remap = {}
net_option = net._net.device_option or caffe2_pb2.DeviceOption()
# if external_inputs have device remappings generated by previous nets,
# then add those remappings as external inputs as well.
all_remaps = defaultdict(list)
for entry, mapped_blob in blob_remap.items():
all_remaps[entry.blob].append(mapped_blob)
mapped_external_inputs = []
for input in new_net._net.external_input:
mapped_external_inputs.extend(all_remaps.get(input) or [])
new_net._net.external_input.extend(mapped_external_inputs)
for op in net._net.op:
temp_remap.clear()
# Get where inputs and outputs should be. If it is a Placeholder
# (i.e. fake) op, then set op's device as blob's devices.
input_dev = None
output_dev = None
if placeHolderOps is not None and op.type in placeHolderOps:
input_dev, output_dev = InferOpDeviceAsBlobDevices(op)
else:
input_dev, output_dev = InferOpBlobDevices(op)
for dev, input in zip(input_dev, op.input):
assert net.BlobIsDefined(input), \
"input {} should be defined in the net.".format(input)
if input not in blob_to_device:
if net.is_external_input(input):
blob_to_device[input] = net_option
else:
raise AttributeError(
"No device information found for blob {}.".
format(input)
)
if not device_equal(blob_to_device[input], dev):
# reuse already moved input
if (RemapEntry(input, dev) in blob_remap and
blob_to_device[blob_remap[RemapEntry(input, dev)]] == dev):
temp_remap[input] = blob_remap[RemapEntry(input, dev)]
else:
# need to make input on correct device.
copy_func = copy_func_between_devices(
blob_to_device[input], dev
)
def _gen_new_name(blob, device_option):
CPU = caffe2_pb2.CPU
if device_option.device_type == CPU:
suffix = '_cpu'
elif IsGPUDeviceType(device_option.device_type):
suffix = '_gpu_' + str(device_option.device_id)
else:
raise RuntimeError(
"Unknown device type: {}".
format(device_option.device_type)
)
return blob + suffix
new_name = _gen_new_name(input, dev)
copy_func(new_net, input, new_name)
blob_remap[RemapEntry(input, dev)] = new_name
temp_remap[input] = new_name
blob_to_device[new_name] = dev
if placeHolderOps is not None and op.type in placeHolderOps:
update_placeholder_op_output(op, blob_to_device)
# Enforcing no reuse blob between operators. In-place blob usage in an
# op is allowed. This is based on the assumption that in-place op has
# same device info
for dev, output in zip(output_dev, op.output):
if output in blob_to_device and (
output not in op.input and
not device_equal(blob_to_device[output], dev)
):
raise RuntimeError(
"In-place blob: {} is not supported between operators "
"with different device option previous:{} now: {}. "
"Failed op:\n {}".format(
output, blob_to_device[output], dev, op
)
)
new_op = caffe2_pb2.OperatorDef()
new_op.CopyFrom(op)
new_list = [temp_remap.get(b, b) for b in new_op.input]
del new_op.input[:]
new_op.input.extend(new_list)
# keep inplace blobs inplace
original_inputs = list(op.input)
for i, out in enumerate(new_op.output):
try:
input_idx = original_inputs.index(out)
new_op.output[i] = new_op.input[input_idx]
except ValueError:
pass
blob_to_device.update(
{o: d for d, o in zip(output_dev, new_op.output)})
new_net.extend_ops([new_op])
return new_net, blob_to_device
def InjectDeviceCopiesAmongNets(nets, blob_to_device_init=None):
"""
Takes in a list of nets. They usually represent your whole execution graph.
This function will insert cross device copy functions to all nets, and resolve
inter-net external inputs dependencies. This method will insert Copy funcitons if
external inputs of a net is produced on different device than it is required.
Inputs:
nets: a list of nets
Outputs:
new_nets: a list of new nets with device difference solved.
Some notes from wyiming:
1. You MUST pass nets in execution order. e.g. [train_init, train]
"""
assert isinstance(nets, list), \
"nets {} should be a list of nets.".format(str(nets))
assert all(isinstance(net, Net) for net in nets), \
"nets {} should be a list of nets.".format(str(nets))
# A holistic blob to device mapping.
blob_to_device = blob_to_device_init or {}
blob_remap = {}
new_nets = []
for net in nets:
new_net, blob_to_device = InjectCrossDeviceCopies(
net,
blob_to_device=blob_to_device,
blob_remap=blob_remap,
)
new_nets.append(new_net)
return new_nets, blob_to_device
def InjectDeviceCopiesAmongNetsWithoutB2D(nets, blob_to_device_init=None):
new_nets, _ = InjectDeviceCopiesAmongNets(nets, blob_to_device_init)
return new_nets
def get_net_name(netlike):
if isinstance(netlike, Net):
return netlike.Proto().name
elif isinstance(netlike, caffe2_pb2.NetDef):
return netlike.name
else:
return netlike
def output_to_list(op_output):
"""
Ensures that the output of an operator is a list.
Use when an operator has a variable number of outputs, but a list of
outputs is desired even when number of outputs is 1.
Args:
op_output: Either a BlobReferenece or an iterable of BlobReferences.
Returns:
A list of BlobReferences.
"""
assert type(op_output) in (list, tuple, BlobReference)
return (
[op_output]
if isinstance(op_output, BlobReference) else list(op_output))
def _add_net_to_dict(net_dict, net):
name = get_net_name(net)
if name in net_dict:
assert net_dict[name] is None or net == net_dict[name], (
'Different nets with same name: ' + name)
return False
else:
net_dict[name] = net if isinstance(net, Net) else None
return True
class ExecutionStep(object):
_step_names_used = set()
@staticmethod
def _get_next_step_name(basename):
name = basename
next_idx = 1
while name in ExecutionStep._step_names_used:
name = basename + '_' + str(next_idx)
next_idx += 1
ExecutionStep._step_names_used |= set([name])
return name
def __init__(self, name, nets=None, num_iter=None):
self._step = caffe2_pb2.ExecutionStep()
self._step.name = name or ExecutionStep._get_next_step_name('step')
self._net_dict = OrderedDict()
self._is_used = False
self._substeps = []
if nets is not None:
if type(nets) is Net:
nets = [nets]
for net in nets:
if _add_net_to_dict(self._net_dict, net):
self._step.network.extend([get_net_name(net)])
if num_iter is not None:
self._step.num_iter = num_iter
def get_net(self, name):
return self._net_dict[name]
def Name(self):
return self._step.name
def __str__(self):
return self._step.name
def _assert_can_mutate(self):
assert not self._is_used, (
'Cannot mutate a step that has already been added to a plan/step.')
def _notify_is_used(self):
self._is_used = True
def Proto(self):
return self._step
def HasNets(self):
return self._step.network is not None and (
len(self._step.network) > 0)
def HasSubsteps(self):
return self._step.substep is not None and (
len(self._step.substep) > 0)
def Nets(self):
return list(viewvalues(self._net_dict))
def Substeps(self):
return self._substeps
def SetIter(self, num_iter):
self._assert_can_mutate()
self._step.num_iter = num_iter
def SetCreateWorkspace(self, create_workspace):
self._assert_can_mutate()
self._step.create_workspace = create_workspace
def SetNumConcurrentInstances(self, num_concurrent_instances):
self._assert_can_mutate()
self._step.num_concurrent_instances = num_concurrent_instances
def SetOnlyOnce(self, only_once):
self._assert_can_mutate()
self._step.only_once = only_once
def SetShouldStopBlob(self, should_stop_blob):
assert isinstance(should_stop_blob, BlobReference), (
"expects BlobReference here, got {}".format(type(should_stop_blob)))
self._assert_can_mutate()
self._step.should_stop_blob = str(should_stop_blob)
def RunEveryMillis(self, interval):
"""
Run this step every interval millisecods, as long as its
siblings are still running. It is guaranteed that, after all
siblings finish, this step will run at least one.
This property is ignored for top-level ExecutionSteps.
"""
self._step.run_every_ms = interval
def SetReportNet(self, report_net, report_interval):
""" DEPRECATED. Use RunEveryMillis instead. """
self._assert_can_mutate()
_add_net_to_dict(self._net_dict, report_net)
self._step.report_net = get_net_name(report_net)
self._step.report_interval = report_interval
def AddSubstep(self, substep):
self._assert_can_mutate()
assert not self.HasNets(), 'Cannot have both network and substeps.'
if isinstance(substep, ExecutionStep):
substep._notify_is_used()
if not substep.HasNets() and not substep.HasSubsteps():
return self
for net in substep.Nets():
_add_net_to_dict(self._net_dict, net)
self._substeps.append(substep)
proto = substep.Proto()
else:
proto = substep
self._step.substep.add().CopyFrom(proto)
return self
def SetConcurrentSubsteps(self, concurrent_substeps):
self._assert_can_mutate()
assert not self.HasNets(), 'Cannot have both network and substeps.'
self._step.concurrent_substeps = concurrent_substeps
def AddNet(self, net):
self._assert_can_mutate()
assert not self.HasSubsteps(), 'Cannot have both network and substeps.'
assert isinstance(net, Net)
_add_net_to_dict(self._net_dict, net)
self._step.network.extend([get_net_name(net)])
return self
def get_all_attributes(self, name):
"""
Return the list of all attributes under the given `name`, present in
all of the nets used in this execution step and its children.
"""
return [
attr
for net in viewvalues(self._net_dict)
for attr in net.get_attributes(name)
]
@classmethod
def create_from_proto(cls, step_proto, net_obj_dict, net_proto_dict):
"""
Create ExecutionStep from ExecutionStep protobuf recursively
"""
assert isinstance(step_proto, caffe2_pb2.ExecutionStep)
assert (len(step_proto.network) > 0 and len(step_proto.substep) == 0) or \
(len(step_proto.network) == 0 and len(step_proto.substep) > 0)
steps_or_nets = []
if len(step_proto.substep) > 0:
for substep_proto in step_proto.substep:
steps_or_nets.append(ExecutionStep.create_from_proto(
substep_proto, net_obj_dict, net_proto_dict))
else:
for net_name in step_proto.network:
if net_name not in net_obj_dict:
assert net_name in net_proto_dict
net = Net(net_proto_dict[net_name])
net_obj_dict[net_name] = net
net = net_obj_dict[net_name]
assert isinstance(net, Net)
steps_or_nets.append(net)
num_iter = step_proto.num_iter if step_proto.HasField('num_iter') else None
concurrent_substeps = step_proto.concurrent_substeps if\
step_proto.HasField('concurrent_substeps') else None
should_stop_blob = BlobReference(step_proto.should_stop_blob) if\
step_proto.HasField('should_stop_blob') else None
only_once = step_proto.only_once if\
step_proto.HasField('only_once') else None
num_concurrent_instances = step_proto.num_concurrent_instances if\
step_proto.HasField('num_concurrent_instances') else None
create_workspace = step_proto.create_workspace if\
step_proto.HasField('create_workspace') else None
run_every_ms = step_proto.run_every_ms if\
step_proto.HasField('run_every_ms') else None
return execution_step(
step_proto.name,
steps_or_nets,
num_iter=num_iter,
report_net=None, # DEPRECATED
report_interval=None, # DEPRECATED
concurrent_substeps=concurrent_substeps,
should_stop_blob=should_stop_blob,
only_once=only_once,
num_concurrent_instances=num_concurrent_instances,
create_workspace=create_workspace,
run_every_ms=run_every_ms)
def add_nets_in_order(step, net_list):
proto = step.Proto()
for substep in step.Substeps():
add_nets_in_order(substep, net_list)
for net in proto.network:
if net not in net_list:
net_list.append(net)
# FIXME(azzolini): This is actually wrong. Report nets should be
# instantiated first since they may run before any substep is run.
# However, curerntly, Reporter depends on this behavior.
if proto.report_net and proto.report_net not in net_list:
net_list.append(proto.report_net)
class Plan(object):
def __init__(self, name_or_step):
self._plan = caffe2_pb2.PlanDef()
self._net_dict = OrderedDict()
self._steps = [] # A list of ExecutionStep
if isinstance(name_or_step, ExecutionStep):
self._plan.name = name_or_step.Name()
self.AddStep(name_or_step)
elif isinstance(name_or_step, basestring):
self._plan.name = name_or_step
else:
raise ValueError('name_or_step must be a string or ExecutionStep')
def __str__(self):
return self._plan.name
def Proto(self):
return self._plan
def AddNets(self, nets):
for net in nets:
if _add_net_to_dict(self._net_dict, net):
assert isinstance(net, Net)
self._plan.network.add().CopyFrom(net.Proto())
def Nets(self):
return list(viewvalues(self._net_dict))
def AddStep(self, step):
assert isinstance(step, ExecutionStep)
step._notify_is_used()
if not step.HasNets() and not step.HasSubsteps():
return
self._plan.execution_step.add().CopyFrom(step.Proto())
self._steps.append(step)
# nets need to be added to the plan in order of usage
net_list = []
add_nets_in_order(step, net_list)
self.AddNets([step.get_net(n) for n in net_list])
def Steps(self):
return self._steps
def get_all_attributes(self, name):
"""
Return the list of all attributes under the given `name`, present in
all of the nets used in this plan.
"""
return [
attr
for net in viewvalues(self._net_dict)
for attr in net.get_attributes(name)
]
@classmethod
def create_from_proto(cls, plan_proto):
assert isinstance(plan_proto, caffe2_pb2.PlanDef)
plan = Plan(plan_proto.name)
plan._plan.CopyFrom(plan_proto)
del plan._plan.network[:]
del plan._plan.execution_step[:]
net_obj_dict = {}
net_proto_dict = {}
for net_proto in plan_proto.network:
assert net_proto.name not in net_proto_dict
net_proto_dict[net_proto.name] = net_proto
for step_proto in plan_proto.execution_step:
step = ExecutionStep.create_from_proto(
step_proto, net_obj_dict, net_proto_dict)
plan.AddStep(step)
return plan
def to_execution_step(step_or_nets, default_name=None):
from caffe2.python.net_builder import NetBuilder
if isinstance(step_or_nets, ExecutionStep):
return step_or_nets
stop_blob = None
if not default_name and hasattr(step_or_nets, 'name'):
default_name = step_or_nets.name
if isinstance(step_or_nets, NetBuilder):
stop_blob = step_or_nets._stop_blob
step_or_nets = step_or_nets.get()
return execution_step(
default_name, step_or_nets, should_stop_blob=stop_blob)
def execution_step(default_name,
steps_or_nets,
num_iter=None,
report_net=None,
report_interval=None,
concurrent_substeps=None,
should_stop_blob=None,
only_once=None,
num_concurrent_instances=None,
create_workspace=False,
run_every_ms=None):
"""
Helper for creating an ExecutionStep.
- steps_or_nets can be:
- None
- Net
- ExecutionStep
- list<Net>
- list<ExecutionStep>
- should_stop_blob is either None or a scalar boolean blob.
- This blob is checked AFTER every substeps/subnets.
- If specified and true, then this step will return immediately.
- Be sure to handle race conditions if setting from concurrent threads.
- if no should_stop_blob or num_iter is provided, defaults to num_iter=1
"""
assert should_stop_blob is None or num_iter is None, (
'Cannot set both should_stop_blob and num_iter.')
if should_stop_blob is None and num_iter is None:
num_iter = 1
step = ExecutionStep(default_name)
if should_stop_blob is not None:
step.SetShouldStopBlob(should_stop_blob)
if num_iter is not None:
step.SetIter(num_iter)
if only_once is not None:
step.SetOnlyOnce(only_once)
if concurrent_substeps is not None:
step.SetConcurrentSubsteps(concurrent_substeps)
if report_net is not None:
assert report_interval is not None
step.SetReportNet(report_net, report_interval)
if num_concurrent_instances is not None:
step.SetNumConcurrentInstances(num_concurrent_instances)
if create_workspace:
step.SetCreateWorkspace(True)
if run_every_ms:
step.RunEveryMillis(run_every_ms)
if isinstance(steps_or_nets, ExecutionStep):
step.AddSubstep(steps_or_nets)
elif isinstance(steps_or_nets, Net):
step.AddNet(steps_or_nets)
elif isinstance(steps_or_nets, list):
if all(isinstance(x, Net) for x in steps_or_nets):
for x in steps_or_nets:
step.AddNet(x)
else:
for x in steps_or_nets:
step.AddSubstep(to_execution_step(x))
elif steps_or_nets:
raise ValueError(
'steps_or_nets must be a step, a net, or a list of nets or steps.')
return step
def scoped_execution_step(name, *args, **kwargs):
"""Same as execution_step() except that the step name is scoped."""
default_name = ScopedName(name) if name else name
return execution_step(default_name, *args, **kwargs)
def _extract_stacktrace():
'''
This function extracts stacktrace without file system access
by purely using sys._getframe() and removes part that belongs to
this file (core.py). We are not using inspect module because
its just a wrapper on top of sys._getframe() whose
logic is based on accessing source files on disk - exactly what
we are trying to avoid here. Same stands for traceback module
The reason for file system access avoidance is that
if code is located on an NFS, file access might be slow
Function returns a list of tuples (file_name, line_number, function)
'''
result = []
# Ignore top 3 layers of stack: this function, _CreateAndAddToSelf, and
# whatever calls _CreateAndAddToSelf (either __getattr__ or Python)
frame = sys._getframe(3)
# We just go down the frame stack in a loop
while frame:
# Its important to extract information from the frame here
# as frame's current line most probably will change later.
result.append((frame.f_code.co_filename, frame.f_lineno, frame.f_code.co_name))
frame = frame.f_back
return result
SetPerOpEnginePref = C.set_per_op_engine_pref
SetGlobalEnginePref = C.set_global_engine_pref
SetEnginePref = C.set_engine_pref
SetOpEnginePref = C.set_op_engine_pref
|