1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
## @package crf
# Module caffe2.python.crf
import numpy as np
from caffe2.python import brew, core, model_helper, recurrent
"""
Due to a limitation in ReccurentNetworkOp, this layer only supports batch_size=1
In order to support batch_size > 1, we will have to implement the CRFUnit
and its gradient in C++ and handle the different batches there.
"""
class CRFWithLoss(object):
def __init__(self, model, num_classes, transitions_blob=None):
self.model = model
self.num_classes = num_classes
self.num_classes_padded = num_classes + 2 # After adding BOS and EOS
if not transitions_blob:
transitions_blob = self.model.param_init_net.UniformFill(
[],
[core.ScopedBlobReference("crf_transitions")],
shape=[self.num_classes_padded, self.num_classes_padded],
min=-1.0,
max=1.0,
)
self.transitions = transitions_blob
self.model.params.append(self.transitions)
def crf_loss(self, predictions, labels, seq_lengths=None):
# Since the transitions matrix is a shared parameter, need to
# take a snapshot of it at the beginning since it can be updated
# in between the operators that uses it when doing parallel updates
transitions_snapshot = self.model.net.Copy(
self.transitions, core.ScopedBlobReference("transitions_snapshot")
)
# Compute best path unary score from the logits
path_unary_score = self._gather_entries_sum(
predictions, labels, self.num_classes
)
# Append BOS and EOS entries to the predictions and labels
predictions = CRFWithLoss.pad_predictions(
predictions, self.model.param_init_net, self.model.net, self.num_classes
)
labels = CRFWithLoss.pad_labels(
labels, self.model.param_init_net, self.model.net, self.num_classes
)
# Compute best path binary scores from the transitions matrix
path_binary_score = self._path_binary_scores(
labels, transitions_snapshot, seq_lengths
)
path_total_score = self.model.net.Add(
[path_binary_score, path_unary_score],
core.ScopedBlobReference("path_total"),
)
# Compute all paths score
zero_index = self.model.param_init_net.ConstantFill([], shape=[1], value=0)
initial_state = self.model.net.Gather(
[predictions, zero_index],
core.ScopedBlobReference("rnn_initial"),
dense_gradient=True,
)
input_data, _ = self.model.net.RemovePadding(
[predictions], padding_width=1, end_padding_width=0, outputs=2
)
input_data = self.model.net.ExpandDims(
[input_data], core.ScopedBlobReference("rnn_input_data"), dims=[1]
)
# Due to a bug in RecurrentNetworkGradientOp, we need to copy the
# transitions blob before sending it to the recurrent network
transitions_copy = self.model.net.Copy(
transitions_snapshot, core.ScopedBlobReference("transitions_copy")
)
all_paths_scores = self._crf_forward(
input_data, initial_state, transitions_copy
)
loss = self.model.net.Sub(
[all_paths_scores, path_total_score], core.ScopedBlobReference("crf_loss")
)
return loss
def _path_binary_scores(self, labels, transitions, seq_lengths=None):
column_ids, _ = self.model.net.RemovePadding(
[labels], outputs=2, padding_width=1, end_padding_width=0
)
row_ids, _ = self.model.net.RemovePadding(
[labels], outputs=2, padding_width=0, end_padding_width=1
)
# Since there is no multi-dimensional gather, I flatten the matrix to
# a 1-d vector and transform the ids to (row_ids * num_columns +
# column_ids) and do gather in 1-d
num_columns_blob = self.model.net.ConstantFill(
[row_ids], value=self.num_classes_padded
)
flattened_ids = self.model.net.Mul([row_ids, num_columns_blob])
flattened_ids = self.model.net.Add([flattened_ids, column_ids])
flattened_transitions = self.model.net.FlattenToVec([transitions])
entries = self.model.net.Gather(
[flattened_transitions, flattened_ids], dense_gradient=True
)
return self.model.ReduceFrontSum(entries)
def _gather_entries_sum(self, in_data, indices, index_size):
indices = self.model.net.Cast([indices], to="int64")
index_size_blob = self.model.param_init_net.ConstantFill(
[], shape=[1], value=index_size
)
query_one_hot = self.model.net.OneHot([indices, index_size_blob])
flattend_query = self.model.net.FlattenToVec(query_one_hot)
flattend_data = self.model.net.FlattenToVec(in_data)
query_scores = self.model.net.DotProduct([flattend_query, flattend_data])
final_sum = self.model.net.ReduceFrontSum([query_scores])
return final_sum
def _crf_forward(
self, input_blob, initial_state, transitions_copy, seq_lengths=None
):
# Build the RNN net and get the last timestep output
out_last = self.build_crf_net(input_blob, initial_state, transitions_copy)
out_last, _ = self.model.net.Reshape(
[out_last], outputs=2, shape=(self.num_classes_padded,)
)
zero_segment_id = self.model.param_init_net.ConstantFill(
[], value=0, shape=[self.num_classes_padded], dtype=core.DataType.INT32
)
# Compute the accumulated total score of all the paths
accum_score = self.model.net.SortedSegmentRangeLogSumExp(
[out_last, zero_segment_id]
)
accum_score, _ = self.model.net.Reshape(accum_score, outputs=2, shape=())
return accum_score
def build_crf_net(self, input_blob, initial_state, transitions):
"""
Adds the crf_net recurrent operator to the model.
model: model_helper.ModelHelper object new operators would be added
to
input_blob: the input sequence in a format T x N x D
where T is sequence size, N - batch size and D - input dimension
##Only supports batch-size 1##
seq_lengths: blob containing sequence lengths (unused)
"""
scope = "crf_net"
def s(name):
""
# We have to manually scope due to our internal/external blob
# relationships.
return "{}/{}".format(str(scope), str(name))
step_model = model_helper.ModelHelper(name="crf_step", param_model=self.model)
input_t, cell_t_prev, _ = step_model.net.AddExternalInputs(
core.ScopedBlobReference("input_t"),
core.ScopedBlobReference("cell_t_prev"),
transitions,
)
zero_segment_id = step_model.param_init_net.ConstantFill(
[],
[s("zero_segment_id")],
value=0,
shape=[self.num_classes_padded],
dtype=core.DataType.INT32,
)
# A hack to bypass model cloning for test
step_model.param_init_net.AddExternalOutput(zero_segment_id)
""" the CRF step """
# Do tile
prev_transpose = brew.transpose(
step_model, cell_t_prev, [s("prev_transpose")], axes=(0, 2, 1)
)
prev_tiled = step_model.net.Tile(
prev_transpose, [s("prev_tiled")], tiles=self.num_classes_padded, axis=2
)
input_t_tiled = step_model.net.Tile(
input_t, [s("input_t_tiled")], tiles=self.num_classes_padded, axis=1
)
input_with_prev = step_model.net.Add(
[prev_tiled, input_t_tiled], [s("input_with_prev")]
)
all_with_transitions = step_model.net.Add(
[input_with_prev, transitions],
[s("prev_with_transitions")],
broadcast=1,
use_grad_hack=1,
)
all_with_transitions_reshaped, _ = step_model.net.Reshape(
all_with_transitions,
[s("all_with_transitions_reshaped"), s("all_with_transitions_orig")],
shape=(self.num_classes_padded, self.num_classes_padded),
)
cell_t = step_model.net.SortedSegmentRangeLogSumExp(
[all_with_transitions_reshaped, zero_segment_id], [s("cell_t")]
)
step_model.net.AddExternalOutputs(cell_t)
""" recurrent network """
cell_input_blob = initial_state
out_all, out_last = recurrent.recurrent_net(
net=self.model.net,
cell_net=step_model.net,
inputs=[(input_t, input_blob)],
initial_cell_inputs=[(cell_t_prev, cell_input_blob)],
links={cell_t_prev: cell_t},
scope=scope,
outputs_with_grads=(1,),
)
return out_last
def update_predictions(self, classes):
def crf_update_predictions_op(inputs, outputs):
# This operator will compute the best path of classes by performing
# Viterbi decoding and then updates the predictions to make the tag
# On the best path has the highest score among the others
predictions = inputs[0].data
transitions = inputs[1].data
predictions = inputs[0].data
predictions_shape = inputs[0].shape
outputs[0].reshape(predictions_shape)
trellis = np.zeros(predictions_shape)
backpointers = np.zeros(predictions_shape, dtype=np.int32)
trellis[0] = predictions[0]
for t in range(1, predictions_shape[0]):
v = np.expand_dims(trellis[t - 1], 1) + transitions
trellis[t] = predictions[t] + np.max(v, 0)
backpointers[t] = np.argmax(v, 0)
viterbi = [np.argmax(trellis[-1])]
for bp in reversed(backpointers[1:]):
viterbi.append(bp[viterbi[-1]])
viterbi.reverse()
new_predictions = np.zeros(predictions_shape)
old_bests = []
for i, w_predictions in enumerate(predictions):
# Get the current tag with the maximum score
new_predictions[i] = predictions[i]
old_best = np.argmax(w_predictions)
old_bests.append(old_best)
# Swap the scores of the current best tag and the tag on the
# Viterbi path
w_predictions[viterbi[i]], w_predictions[old_best] = (
w_predictions[old_best],
w_predictions[viterbi[i]],
)
new_predictions[i] = w_predictions
# Remove the BOS and EOS entries from the predictions matrix
orig_predictions = new_predictions[1:-1, 0:-2]
outputs[0].reshape(orig_predictions.shape)
outputs[0].data[...] = orig_predictions
padded_classes = CRFWithLoss.pad_predictions(
classes, self.model.param_init_net, self.model.net, self.num_classes
)
new_classes = self.model.net.Python(crf_update_predictions_op)(
[padded_classes, self.transitions],
core.ScopedBlobReference("post_crf_classes"),
)
return new_classes
@staticmethod
def pad_labels(labels, init_net, net, num_classes):
bos_i = num_classes
eos_i = num_classes + 1
bos_i_b = init_net.ConstantFill([], shape=[1], value=bos_i)
eos_i_b = init_net.ConstantFill([], shape=[1], value=eos_i)
labels = net.Cast([labels], to="int64")
padded_labels, _ = net.Concat([bos_i_b, labels, eos_i_b], axis=0, outputs=2)
return padded_labels
@staticmethod
def pad_predictions(predictions, init_net, net, num_classes):
# This function will introduce two labels for beginning of sequence
# And end of sequence, it will make the necessary udpates to the
# the predictions blob
low_score = -1000.0 # An arbitray very low number
b_scores = np.array([[low_score] * num_classes + [0, low_score]]).astype(
np.float32
)
e_scores = np.array([[low_score] * num_classes + [low_score, 0]]).astype(
np.float32
)
b_scores = init_net.GivenTensorFill(
[], "b_scores", shape=[1, num_classes + 2], values=b_scores
)
e_scores = init_net.GivenTensorFill(
[], "e_scores", shape=[1, num_classes + 2], values=e_scores
)
zero_index = net.ConstantFill([], shape=[1], value=0)
length = net.Gather([net.Shape([predictions]), zero_index])
length = net.Cast(length, to="int32")
t_range = net.LengthsRangeFill(length)
padding = net.ConstantFill([t_range], value=low_score)
padding = net.ExpandDims(padding, dims=[1])
padded_predictions, _ = net.Concat(
[predictions, padding, padding], outputs=2, axis=1
)
padded_predictions_concat, _ = net.Concat(
[b_scores, padded_predictions, e_scores], outputs=2, axis=0
)
return padded_predictions_concat
|