1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
|
## @package data_parallel_model
# Module caffe2.python.data_parallel_model
from collections import OrderedDict
from future.utils import viewitems, viewkeys, viewvalues
import logging
import copy
from multiprocessing import cpu_count
from caffe2.python import \
model_helper, dyndep, scope, workspace, core, memonger, utils
from caffe2.proto import caffe2_pb2
import numpy as np
import warnings
dyndep.InitOpsLibrary("@/caffe2/caffe2/contrib/gloo:gloo_ops")
# We only import nccl operators when the machine has GPUs
# Otherwise the binary can be compiled with CPU-only mode, and
# will not be able to find those modules
if workspace.NumGpuDevices() > 0:
dyndep.InitOpsLibrary("@/caffe2/caffe2/contrib/nccl:nccl_ops")
dyndep.InitOpsLibrary("@/caffe2/caffe2/contrib/gloo:gloo_ops_gpu")
log = logging.getLogger("data_parallel_model")
log.setLevel(logging.INFO)
_DEFAULT_TIMEOUT_SEC = 30
_DEFAULT_BARRIER_NET_TIMEOUT_SEC = 300
def Parallelize_GPU(*args, **kwargs):
kwargs['cpu_device'] = False
Parallelize(*args, **kwargs)
def Parallelize_CPU(*args, **kwargs):
kwargs['cpu_device'] = True
Parallelize(*args, **kwargs)
def Parallelize_iDeep(*args, **kwargs):
kwargs['ideep'] = True
Parallelize(*args, **kwargs)
def Parallelize(
model_helper_obj,
input_builder_fun,
forward_pass_builder_fun,
param_update_builder_fun=None,
optimizer_builder_fun=None,
post_sync_builder_fun=None,
pre_grad_net_transformer_fun=None,
net_transformer_fun=None,
devices=None,
rendezvous=None,
net_type='dag',
broadcast_computed_params=True,
optimize_gradient_memory=False,
dynamic_memory_management=False,
blobs_to_keep=None,
use_nccl=False,
max_concurrent_distributed_ops=16,
cpu_device=False,
ideep=False,
num_threads_per_device=4,
shared_model=False,
combine_spatial_bn=False,
barrier_net_timeout_sec=_DEFAULT_BARRIER_NET_TIMEOUT_SEC,
):
'''
Function to create a model that can run on many GPUs or CPUs.
model_helper_obj: an object of ModelHelper
input_builder_fun:
Function that adds the input operators
Note: Remember to instantiate reader outside of this
function so all devices share same reader object.
Signature: input_builder_fun(model)
forward_pass_builder_fun:
Function to add the operators to the model.
Must return list of loss-blob references that
are used to build the gradient. Loss scale parameter
is passed, as you should scale the loss of your model
by 1.0 / the total number of devices.
Signature: forward_pass_builder_fun(model, loss_scale)
param_update_builder_fun:
Function that adds operators that are run after
gradient update, such as updating the weights and
weight decaying. This is called for each GPU separately.
Signature: param_update_builder_fun(model)
optimizer_builder_fun:
Alternative to param_update_builder_fun, allows one
to add an optimizer for the whole model. Called only
once, without name or devicescope.
net_transformer_fun:
Optional function to transform the network after the
network is built. It will be called once (NOT once per
GPU.)
Signature:
net_transformer_fun(
model, num_devices, device_prefix, device_type)
pre_grad_net_transformer_fun:
Optional function to transform the network similar to
net_transformer_fun, but happens before gradient ops
been add.
Signature: pre_grad_net_transformer_fun(model)
post_sync_builder_fun:
Function applied after initial parameter sync has been
completed, such as keeping multi-precision parameters
in sync.
Signature: post_sync_builder_fun(model)
devices: List of GPU ids, such as [0, 1, 2, 3],
rendezvous: used for rendezvous in distributed computation, if None
then only one node is used. To create rendezvous,
use <TBD>.
net_type: Network type
optimize_gradient_memory: whether to apply 'memonger' to share blobs
shared_model (only for CPU) use same parameters on each device
in gradient computation to reduce memory footprint.
dynamic_memory_management: Whether to apply dynamic memory optimization
by freeing unused blobs. The underlying (de)allocation
uses cached allocator. For GPU training PLEASE MAKE SURE
caffe2_cuda_memory_pool is set.
blobs_to_keep : A list of blob names to keep and don't free during
dynamic memory optimization (for example loss blob).
cpu_device Use CPU instead of GPU.
ideep Use ideep.
combine_spatial_bn:
When set to True, applies batch normalization across
all devices within the node. If False, batch
normalization will be done separately for each device.
This option is currently only supported on the CPU.
barrier_net_timeout_sec:
The timeout in seconds of the barrier net, which is run
to synchronize shards before a training epoch starts.
Defaults to 300 seconds.
'''
assert scope.CurrentDeviceScope() is None \
or scope.CurrentDeviceScope().device_type == caffe2_pb2.CPU, \
"Parallelize must be called without device-scope, \
device scope was: {}".format(scope.CurrentDeviceScope())
if devices is None:
if not (cpu_device or ideep):
devices = list(range(0, workspace.NumCudaDevices()))
else:
devices = list(range(0, cpu_count()))
if not (cpu_device or ideep):
for gpu in devices:
if gpu >= workspace.NumGpuDevices():
log.warning("** Only {} GPUs available, GPUs {} requested".format(
workspace.NumGpuDevices(), devices))
break
model_helper_obj._device_type = workspace.GpuDeviceType
model_helper_obj._device_prefix = "gpu"
model_helper_obj._shared_model = False
device_name = "GPU"
assert shared_model is False, "Shared model only supported on CPU"
elif ideep:
model_helper_obj._device_type = caffe2_pb2.IDEEP
model_helper_obj._device_prefix = "ideep"
device_name = "IDEEP"
model_helper_obj._shared_model = shared_model
if shared_model and rendezvous is not None:
assert "Shared model only supported on single-node currently"
else:
model_helper_obj._device_type = caffe2_pb2.CPU
model_helper_obj._device_prefix = "cpu"
device_name = "CPU"
model_helper_obj._shared_model = shared_model
if shared_model and rendezvous is not None:
assert "Shared model only supported on single-node currently"
log.info("Parallelizing model for devices: {}".format(devices))
extra_workers = 8 if rendezvous is not None else 0 # best-guess
num_workers = len(devices) * num_threads_per_device + extra_workers
max_concurrent_distributed_ops =\
min(max_concurrent_distributed_ops, num_workers - 1)
model_helper_obj.net.Proto().num_workers = num_workers
model_helper_obj.net.Proto().type = net_type
# Store some information in the model -- a bit ugly
model_helper_obj._devices = devices
model_helper_obj._rendezvous = rendezvous
model_helper_obj._sync_barrier_net = None
model_helper_obj._broadcast_context = None
model_helper_obj._grad_names = []
assert isinstance(model_helper_obj, model_helper.ModelHelper)
# Keep track of params that were in the model before: they are not
# data parallel, so we need to handle them separately
non_datapar_params = copy.copy(model_helper_obj.params)
# Add input and model
log.info("Create input and model training operators")
losses_by_gpu = {}
num_shards = 1 if rendezvous is None else rendezvous['num_shards']
loss_scale = 1.0 / (len(devices) * num_shards)
has_parameter_updates = param_update_builder_fun is not None or \
optimizer_builder_fun is not None
assert not (
param_update_builder_fun is not None and
optimizer_builder_fun is not None
), 'Can only specify one of param_update_builder_fun, optimizer_builder_fun'
# Check that a model that is used for validation/testing has
# init_params False, otherwise running the param init net will overwrite
# synchronized values by the training net
if not has_parameter_updates and model_helper_obj.init_params:
log.warning('')
log.warning("############# WARNING #############")
log.warning("Model {}/{} is used for testing/validation but".format(
model_helper_obj.name, model_helper_obj))
log.warning("has init_params=True!")
log.warning("This can conflict with model training.")
log.warning("Please ensure model = ModelHelper(init_params=False)")
log.warning('####################################')
log.warning('')
# TODO: make into assert
for device in devices:
device_opt = core.DeviceOption(model_helper_obj._device_type, device)
with core.DeviceScope(device_opt):
with core.NameScope("{}_{}".format(model_helper_obj._device_prefix,
device)):
log.info("Model for {} : {}".format(device_name, device))
input_builder_fun(model_helper_obj)
losses = forward_pass_builder_fun(model_helper_obj, loss_scale)
# Losses are not needed for test net
if has_parameter_updates:
assert isinstance(losses, list), \
'Model builder function must return list of loss blobs'
for loss in losses:
assert isinstance(loss, core.BlobReference), \
'Model builder func must return list of loss blobs'
losses_by_gpu[device] = losses
_ValidateParams(model_helper_obj.params)
# Create parameter map
model_helper_obj._device_grouped_blobs =\
_GroupByDevice(model_helper_obj, devices,
model_helper_obj.params, non_datapar_params)
# computed params
computed_params_grouped =\
_GroupByDevice(model_helper_obj, devices,
model_helper_obj.GetComputedParams(''), [])
model_helper_obj._device_grouped_blobs.update(computed_params_grouped)
model_helper_obj._param_names =\
list(viewkeys(model_helper_obj._device_grouped_blobs))
model_helper_obj._computed_param_names =\
list(viewkeys(computed_params_grouped))
if pre_grad_net_transformer_fun:
pre_grad_net_transformer_fun(model_helper_obj)
if has_parameter_updates:
log.info("Adding gradient operators")
_AddGradientOperators(devices, model_helper_obj, losses_by_gpu)
if net_transformer_fun:
net_transformer_fun(
model_helper_obj,
len(devices),
model_helper_obj._device_prefix,
model_helper_obj._device_type)
if not has_parameter_updates:
log.info("Parameter update function not defined --> only forward")
_InferBlobDevice(model_helper_obj)
return
if combine_spatial_bn:
assert(has_parameter_updates), \
'combine_spatial_bn should only be used for train model'
_InterleaveOps(model_helper_obj)
if cpu_device:
_CPUInterDeviceBatchNormalization(model_helper_obj)
else:
_GPUInterDeviceBatchNormalization(model_helper_obj)
_ValidateParams(model_helper_obj.params)
# Group gradients by device and register to blob lookup
param_to_grad = model_helper_obj.param_to_grad
grads_ordered = [param_to_grad[p] for p in
model_helper_obj.params if p in param_to_grad]
non_datapar_grads = [param_to_grad[p] for p in non_datapar_params]
gradients_grouped = _GroupByDevice(
model_helper_obj,
devices,
grads_ordered,
non_datapar_grads
)
model_helper_obj._device_grouped_blobs.update(gradients_grouped)
model_helper_obj._grad_names = list(viewkeys(gradients_grouped))
model_helper_obj._losses_by_gpu = losses_by_gpu
_InferBlobDevice(model_helper_obj)
log.info("Add gradient all-reduces for SyncSGD")
if broadcast_computed_params:
_BroadcastComputedParams(devices, model_helper_obj, rendezvous, use_nccl)
if len(model_helper_obj._grad_names) > 0:
# Gradients in reverse order
reverse_ordered_grads = _GetReverseOrderedGrads(model_helper_obj)
assert(len(reverse_ordered_grads) > 0)
_AllReduceBlobs(
reverse_ordered_grads,
devices,
model_helper_obj,
model_helper_obj.net,
rendezvous,
use_nccl,
max_concurrent_distributed_ops,
)
else:
log.info("NOTE: Param builder function did not create any parameters.")
log.info("Post-iteration operators for updating params")
num_shards = 1 if rendezvous is None else rendezvous['num_shards']
all_params = set(model_helper_obj.GetParams(''))
if shared_model:
_PruneParametersForSharing(model_helper_obj)
if param_update_builder_fun is not None:
for device in devices:
device_opt = core.DeviceOption(model_helper_obj._device_type, device)
with core.DeviceScope(device_opt):
with core.NameScope(
"{}_{}".format(model_helper_obj._device_prefix, device)
):
param_update_builder_fun(model_helper_obj)
else:
log.info("Calling optimizer builder function")
optimizer = optimizer_builder_fun(model_helper_obj)
model_helper_obj._optimizer = optimizer
(sync_blobs, sync_names) = _ComputeBlobsToSync(model_helper_obj)
sync_blobs_grouped = _GroupByDevice(
model_helper_obj,
devices,
sync_blobs,
[],
)
model_helper_obj._device_grouped_blobs.update(sync_blobs_grouped)
_InferBlobDevice(model_helper_obj)
_AnalyzeOperators(model_helper_obj)
# Configure dagnet to run with only one worker on the first iteration,
# to prevent concurrency problems with allocs and nccl.
arg = model_helper_obj.Proto().arg.add()
arg.name = "first_iter_only_one_worker"
arg.i = 1
# Add initial parameter syncs
log.info("Add initial parameter sync")
_SyncAllParams(
devices,
model_helper_obj,
model_helper_obj.param_init_net,
model_helper_obj.param_init_net,
rendezvous,
sync_names,
max_concurrent_distributed_ops=1
)
# Handle any operations that need to be done after parameter sync
# i.e. making sure multi-precision copies of parameters are up-to-date
if post_sync_builder_fun is not None:
for device in devices:
device_opt = core.DeviceOption(model_helper_obj._device_type, device)
with core.DeviceScope(device_opt):
with core.NameScope(
"{}_{}".format(model_helper_obj._device_prefix, device)
):
post_sync_builder_fun(model_helper_obj)
assert not (optimize_gradient_memory and dynamic_memory_management), \
"""It is not advised to use gradient optimization ('memonger')
with dynamic memory management."""
if optimize_gradient_memory:
_OptimizeGradientMemorySimple(model_helper_obj, losses_by_gpu, devices)
if dynamic_memory_management:
_AddDynamicMemoryOptimization(model_helper_obj, blobs_to_keep, devices)
model_helper_obj._data_parallel_model_init_nets = [
model_helper_obj.param_init_net,
]
model_helper_obj._data_parallel_model_nets = [
model_helper_obj.net
]
_AddBarrierToModelNets(model_helper_obj, barrier_net_timeout_sec)
if shared_model:
_RemapParameterBlobsForSharedModel(model_helper_obj, all_params)
def Parallelize_GPU_BMUF(*args, **kwargs):
kwargs['cpu_device'] = False
Parallelize_BMUF(*args, **kwargs)
def Parallelize_CPU_BMUF(*args, **kwargs):
kwargs['cpu_device'] = True
Parallelize_BMUF(*args, **kwargs)
def Parallelize_BMUF(
model_helper_obj,
input_builder_fun,
forward_pass_builder_fun,
param_update_builder_fun,
block_learning_rate=1.0,
block_momentum=None,
devices=None,
rendezvous=None,
net_type='dag',
master_device=None,
use_nccl=False,
nesterov=False,
optimize_gradient_memory=False,
reset_momentum_sgd=False,
warmup_iterations=None,
max_concurrent_distributed_ops=4,
add_blobs_to_sync=None,
num_threads_per_device=4,
cpu_device=False,
barrier_net_timeout_sec=_DEFAULT_BARRIER_NET_TIMEOUT_SEC,
):
'''
Function to create model that run on many GPUs and creates a net for
parameter_updates that can be run independently for number of iterations
then followed by another net that runs once to compute the final parameter
updates according to block wise model update filtering rule described
in : Scalable Training of Deep Learning Machines by Incremental Block
Training with Intra-block Parallel Optimization and Blockwise Model-Update
Filtering (ICASSP 2016).
'''
assert scope.CurrentDeviceScope() is None \
or scope.CurrentDeviceScope().device_type == caffe2_pb2.CPU, \
"Parallelize must be called without device-scope, \
device scope was: {}".format(scope.CurrentDeviceScope())
assert isinstance(model_helper_obj, model_helper.ModelHelper)
if devices is None:
devices = list(range(0, workspace.NumGpuDevices()))
if master_device is None:
master_device = devices[0]
if not cpu_device:
for gpu in devices:
if gpu >= workspace.NumGpuDevices():
log.warning("** Only {} GPUs available, GPUs {} requested".format(
workspace.NumGpuDevices(), devices))
break
model_helper_obj._device_type = workspace.GpuDeviceType
model_helper_obj._device_prefix = "gpu"
else:
model_helper_obj._device_type = caffe2_pb2.CPU
model_helper_obj._device_prefix = "cpu"
model_helper_obj._devices = devices
model_helper_obj._rendezvous = rendezvous
model_helper_obj._sync_barrier_net = None
model_helper_obj._broadcast_context = None
model_helper_obj._shared_model = False
master_dev_opt = core.DeviceOption(model_helper_obj._device_type, master_device)
# question: rendezvous structure
num_shards = rendezvous['num_shards'] if rendezvous else 1
# num_devices is #devices across all machines
num_devices = len(devices) * num_shards
# num_workers is #threads to execute the DAG per shard
num_workers = num_threads_per_device * len(devices)
if rendezvous:
num_workers += 8
loss_scale = 1.0 / num_devices
if block_momentum is None:
block_momentum = 1.0 - 1.0 / num_devices
max_concurrent_distributed_ops = min(
max_concurrent_distributed_ops,
num_workers - 1
)
model_helper_obj.net.Proto().num_workers = num_workers
model_helper_obj.net.Proto().type = net_type
# A net for initializing global model parameters. Its called once in the
# same step as net parameters initialization.
model_helper_obj._global_model_init_net = core.Net('global_model_init')
model_helper_obj._global_model_init_net.Proto().type = net_type
model_helper_obj._global_model_init_net.Proto().num_workers = \
num_workers
# A net for computing final parameter updates. Its will run once after
# running net (local models updates) for `num_local_iterations` times.
model_helper_obj._global_model_param_updates_net = core.Net('global_model')
model_helper_obj._global_model_param_updates_net.Proto().type = net_type
model_helper_obj._global_model_param_updates_net.Proto().num_workers = \
num_workers
def _v(param):
return "{}_v".format(param)
def _g(param):
return "{}_g".format(param)
def _v_prev(param):
return "{}_prev".format(param)
# Keep track of params that were in the model before: they are not
# data parallel, so we need to handle them separately
non_datapar_params = copy.copy(model_helper_obj.params)
model_helper_obj._losses_by_gpu = {}
def _InitializeModels(gpu_id):
input_builder_fun(model_helper_obj)
loss = forward_pass_builder_fun(model_helper_obj, loss_scale)
model_helper_obj._losses_by_gpu[gpu_id] = loss
_ForEachDevice(
devices,
_InitializeModels,
device_type=model_helper_obj._device_type,
device_prefix=model_helper_obj._device_prefix,
scoped=True
)
_ValidateParams(model_helper_obj.params)
model_helper_obj._device_grouped_blobs =\
_GroupByDevice(model_helper_obj, devices,
model_helper_obj.params, non_datapar_params)
model_helper_obj._param_names =\
list(viewkeys(model_helper_obj._device_grouped_blobs))
_AddGradientOperators(
devices, model_helper_obj, model_helper_obj._losses_by_gpu
)
_ValidateParams(model_helper_obj.params)
_InferBlobDevice(model_helper_obj)
def _InitializeParamUpdate(gpu_id):
param_update_builder_fun(model_helper_obj)
_ForEachDevice(
devices,
_InitializeParamUpdate,
device_type=model_helper_obj._device_type,
device_prefix=model_helper_obj._device_prefix,
scoped=True
)
model_parameter_names = list(
viewkeys(model_helper_obj._device_grouped_blobs)
)
if warmup_iterations is not None:
model_helper_obj._warmup_iterations = warmup_iterations
# A net for broadcasting gpu-0 (master shard) parameters after
# running net for `warmup_iterartions`.
model_helper_obj._warmup_broadcast = core.Net('warmup-broadcast')
model_helper_obj._warmup_broadcast.Proto().type = net_type
model_helper_obj._warmup_broadcast.Proto().num_workers = \
num_workers
_SyncAllParams(
devices,
model_helper_obj,
model_helper_obj.param_init_net,
model_helper_obj._warmup_broadcast,
rendezvous,
model_parameter_names,
max_concurrent_distributed_ops
)
for param_name in viewkeys(model_helper_obj._device_grouped_blobs):
param = model_helper_obj._device_grouped_blobs[param_name][master_device]
with core.DeviceScope(master_dev_opt):
model_helper_obj._warmup_broadcast.Copy(param, _g(param))
# (Step-0) Initialize momentum parameters on master device.
for param_name in viewkeys(model_helper_obj._device_grouped_blobs):
param = model_helper_obj._device_grouped_blobs[param_name][master_device]
with core.DeviceScope(master_dev_opt):
model_helper_obj._global_model_init_net.ConstantFill(
param, _v(param), value=0.0
)
model_helper_obj._global_model_init_net.Copy(param, _g(param))
if nesterov:
model_helper_obj._global_model_init_net.ConstantFill(
param, _v_prev(param), value=0.0
)
# (Step-1) Update models for num_local_iterations.
# (Step-2) Compute post-local-updates average of the params.
# Sum model params across GPUs and store resutls in param_avg blob.
_AllReduceBlobs(
model_parameter_names,
devices,
model_helper_obj,
model_helper_obj._global_model_param_updates_net,
rendezvous,
use_nccl,
max_concurrent_distributed_ops
)
# (Step-3) Update momentum params :
# param_v = block_momentum * param_v
# + block_learning_Rate * (param_avg - param)
# if nesterov momentum:
# param = param + param_v
# - block_momentum * (param_v - param_v_prev)
# param_v_prev = param_v
# else:
# param = param + param_v
for param_name in model_parameter_names:
param = model_helper_obj._device_grouped_blobs[param_name][master_device]
with core.DeviceScope(master_dev_opt):
# TODO(ataei) : Stop building the graph here to get model average ?
model_helper_obj._global_model_param_updates_net.Scale(
param, param, scale=1.0 / num_devices
)
model_helper_obj._global_model_param_updates_net.Sub(
[param, _g(param)], param
)
model_helper_obj._global_model_param_updates_net.Scale(
param, param, scale=block_learning_rate
)
model_helper_obj._global_model_param_updates_net.Scale(
_v(param), _v(param), scale=block_momentum
)
model_helper_obj._global_model_param_updates_net.Add(
[_v(param), param], _v(param)
)
model_helper_obj._global_model_param_updates_net.Add(
[_g(param), _v(param)], _g(param)
)
if nesterov:
model_helper_obj._global_model_param_updates_net.Sub(
[_v(param), _v_prev(param)], _v_prev(param)
)
model_helper_obj._global_model_param_updates_net.Scale(
_v_prev(param), _v_prev(param), scale=block_momentum
)
model_helper_obj._global_model_param_updates_net.Sub(
[_g(param), _v_prev(param)], _g(param)
)
model_helper_obj._global_model_param_updates_net.Copy(
_v(param), _v_prev(param)
)
model_helper_obj._global_model_param_updates_net.Copy(
_g(param), param
)
_SyncAllParams(
devices,
model_helper_obj,
model_helper_obj.param_init_net,
model_helper_obj._global_model_param_updates_net,
rendezvous,
model_parameter_names,
max_concurrent_distributed_ops
)
# Add additional syncs
if add_blobs_to_sync is not None:
AddBlobSync(
model_helper_obj,
add_blobs_to_sync,
net=model_helper_obj._global_model_param_updates_net)
# Reset momentum-SGD parameters
if reset_momentum_sgd:
momentum_ops = [op for op in model_helper_obj.net.Proto().op
if op.type == 'MomentumSGDUpdate']
for op in momentum_ops:
momentum_blob = op.input[1]
with core.DeviceScope(op.device_option):
model_helper_obj._global_model_param_updates_net.ConstantFill(
[momentum_blob], momentum_blob, value=0.0
)
if optimize_gradient_memory:
_OptimizeGradientMemorySimple(
model_helper_obj, model_helper_obj._losses_by_gpu, devices
)
model_helper_obj._data_parallel_model_init_nets = [
model_helper_obj.param_init_net,
model_helper_obj._global_model_init_net
]
model_helper_obj._data_parallel_model_nets = [
model_helper_obj.net,
(model_helper_obj._global_model_param_updates_net, 1)
]
_AddBarrierToModelNets(model_helper_obj, barrier_net_timeout_sec)
def CreateNet(model, overwrite=False):
for net_iters in model._data_parallel_model_nets:
if isinstance(net_iters, tuple):
workspace.CreateNet(net_iters[0], overwrite=overwrite)
else:
workspace.CreateNet(net_iters, overwrite=overwrite)
def RunInitNet(model):
for init_net in model._data_parallel_model_init_nets:
workspace.RunNetOnce(init_net)
CreateNet(model)
def RunWarmup(model):
workspace.RunNet(model.net, model._warmup_iterations)
workspace.RunNetOnce(model._warmup_broadcast)
def RunNet(model, num_iterations):
for net_iter in model._data_parallel_model_nets:
if isinstance(net_iter, tuple):
workspace.RunNet(net_iter[0].Proto().name, net_iter[1])
else:
workspace.RunNet(net_iter, num_iterations)
def _AddBarrierToModelNets(model, barrier_net_timeout_sec):
if model._rendezvous is not None and model._rendezvous['engine'] == 'GLOO':
# Synchronize DPM at the start of each epoch. This allows shards that
# starts an epoch sooner to wait for slower shards. Without this,
# shards that are faster than others will begin training the next epoch
# while stragglers are blocked on IO, and may timeout after 30 seconds
# (_DEFAULT_TIMEOUT_SEC).
# We pass in model.param_init_net so that the barrier net can be run as
# part of the param_init_net.
model._barrier_init_net = core.Net("barrier_init_net")
model._barrier_net = _CreateBarrierNet(model, model._barrier_init_net,
"pre_training", barrier_net_timeout_sec)
model._data_parallel_model_init_nets.insert(0, model._barrier_init_net)
model._data_parallel_model_nets.insert(0, model._barrier_net)
def _CreateBarrierNet(model, init_net, name_prefix, timeout_sec):
log.info("Creating barrier net")
assert model._rendezvous['engine'] == 'GLOO', "Engine does not support barrier"
comm_world = _CreateOrCloneCommonWorld(
init_net,
name_prefix + "_barrier_cw",
rendezvous=model._rendezvous,
timeout_sec=timeout_sec,
)
barrier_net = core.Net(name_prefix + "_barrier_net")
barrier_net.Barrier(
inputs=[comm_world],
outputs=[],
engine=model._rendezvous['engine'],
)
return barrier_net
# DEPRECATED: See warnings below.
def Synchronize(model, timeout_sec=_DEFAULT_BARRIER_NET_TIMEOUT_SEC):
warnings.warn("The Synchronize API has been deprecated. We now have a "
"barrier net which runs before training to ensure all hosts wait "
"before training starts. The default timeout for the barrier is "
"300s and it can be overridden using the barrier_net_timeout_sec "
"parameter when calling Parallelize.",
category=DeprecationWarning, stacklevel=2)
if model._rendezvous is None or model._rendezvous['num_shards'] <= 1:
# Single host case
return
if model._sync_barrier_net is None:
barrier_init_net = core.Net("sync_barrier_init_net")
model._sync_barrier_net = _CreateBarrierNet(
model, barrier_init_net, "sync", timeout_sec)
workspace.RunNetOnce(barrier_init_net)
workspace.CreateNet(model._sync_barrier_net)
model._sync_barrier_net_timeout = timeout_sec
assert model._sync_barrier_net_timeout == timeout_sec, \
"Must use fixed timeout, {} != {}".format(
model._sync_barrier_net_timeout, timeout_sec
)
log.info("Synchronize run barrier net.")
workspace.RunNet(model._sync_barrier_net)
def ConvertNetForDevice(net, device=None):
'''
Converts all blobs in the net to have namescope gpu_X, and correct
device scope. You can use this to enable AppendNet with a
forward_pass_builder_fun:
def builder_fun(model):
...
model.net.AppendNet(
data_parallel_model.ConvertNetForDevice(othermodel.net))
model.param_init_net.AppendNet(
data_parallel_model.ConvertNetForDevice(othermodel.param_init_net))
'''
mnet = copy.deepcopy(net)
if device is None:
device = scope.CurrentDeviceScope()
if core.IsGPUDeviceType(device.device_type):
device_prefix = "gpu"
elif device.device_type == caffe2_pb2.IDEEP:
device_prefix = "ideep"
else:
device_prefix = "cpu"
namescope = "{}_{}/".format(device_prefix, device.device_id)
for op in mnet.Proto().op:
if "RecurrentNetwork" in op.type:
raise NotImplementedError("RecurrentNetwork conversion not yet supported")
for i, inputb in enumerate(op.input):
op.input[i] = namescope + inputb
for i, outputb in enumerate(op.output):
op.output[i] = namescope + outputb
for i, blob in enumerate(op.control_input):
op.control_input[i] = namescope + blob
op.device_option.CopyFrom(device)
for i, einp in enumerate(mnet.Proto().external_input):
mnet.Proto().external_input[i] = namescope + einp
for i, eoutp in enumerate(mnet.Proto().external_output):
mnet.Proto().external_output[i] = namescope + eoutp
return mnet
def _ForEachDevice(devices, f, device_type, device_prefix, scoped=False,
*args, **kwargs):
for device in devices:
device_opt = core.DeviceOption(device_type, device)
with core.DeviceScope(device_opt):
if scoped:
with core.NameScope("{}_{}".format(device_prefix, device)):
f(device, *args, **kwargs)
else:
f(device, *args, **kwargs)
def _AddGradientOperators(devices, model, losses_by_gpu):
def create_grad(lossp):
return model.ConstantFill(lossp, str(lossp) + "_grad", value=1.0)
loss_grad = {}
# Explicitly need to create gradients on each GPU
for gpu_id in devices:
device = core.DeviceOption(model._device_type, gpu_id)
with core.DeviceScope(device):
for l in losses_by_gpu[gpu_id]:
lg = create_grad(l)
loss_grad[str(l)] = str(lg)
model.AddGradientOperators(loss_grad)
def ExtractPredictorNet(model, inputs, outputs, device):
'''
Returns (net, params) that can be exported to be used as a prediction
net.
'''
master_device = model._devices[0]
prefix = "{}_{}/".format(model._device_prefix, master_device)
prefix_inputs = [prefix + str(b) for b in inputs]
prefix_outputs = [prefix + str(b) for b in outputs]
(predictor_net, export_blobs) = model_helper.ExtractPredictorNet(
net_proto=model.net.Proto(),
input_blobs=prefix_inputs,
output_blobs=prefix_outputs,
device=device,
renames={
a: b
for (a, b) in zip(prefix_inputs + prefix_outputs, inputs + outputs)
},
)
return (predictor_net, export_blobs)
def GetCheckpointParams(model):
'''
Returns a set of blobs that are needed for a complete check point.
They are blobs for the first gpu and iteration blobs.
'''
(all_blobs, _) = _ComputeBlobsToSync(model)
first_gpu_blobs = {
b
for b in all_blobs
if str(b)
.startswith("{}_{}/".format(model._device_prefix, model._devices[0]))
}
# Add iteration blobs that do not have namescope separately, since
# it is important to checkpoint iteration counter
iteration_blobs = set()
for op in model.net.Proto().op:
if op.type == 'Iter' or op.type == 'AtomicIter':
if not op.output[0].startswith("{}_".format(model._device_prefix)):
iteration_blobs.add(op.output[0])
return first_gpu_blobs.union(iteration_blobs)
def FinalizeAfterCheckpoint(model, blobs=None, cpu_mode=False):
'''
This function should be called after loading parameters from a
checkpoint / initial parameters file.
'''
if not hasattr(model, "_checkpoint_net"):
if blobs is None:
(_, uniq_blob_names) = _ComputeBlobsToSync(model)
else:
uniq_blob_names = [stripBlobName(p) for p in blobs]
# Synchronize to the blob lookup map, as the provided
# blobs might have non-parameters, such as momentum blobs.
log.info("Creating checkpoint synchronization net")
devices = model.GetDevices()
for name in uniq_blob_names:
if name not in model._device_grouped_blobs:
grouped = {
d:
core.BlobReference("{}_{}{}{}".format(
model._device_prefix,
d,
scope._NAMESCOPE_SEPARATOR,
name)
) for d in devices}
model._device_grouped_blobs[name] = grouped
model._checkpoint_net = core.Net("checkpoint_sync_net")
if not cpu_mode:
model._checkpoint_net.RunAllOnGPU()
checkpoint_init_net = None
if (model._rendezvous is not None and model._rendezvous['num_shards'] > 1):
checkpoint_init_net = core.Net("checkpoint_init_net")
if not cpu_mode:
checkpoint_init_net.RunAllOnGPU()
_SyncAllParams(
devices,
model,
checkpoint_init_net,
model._checkpoint_net,
model._rendezvous,
uniq_blob_names,
max_concurrent_distributed_ops=1
)
if (checkpoint_init_net):
workspace.RunNetOnce(checkpoint_init_net)
workspace.CreateNet(model._checkpoint_net)
# Run the sync
log.info("Run checkpoint net")
workspace.RunNet(model._checkpoint_net.Proto().name)
def GetLearningRateBlobNames(model):
'''
Returns a list of learning rates blob names used in the optimizer.
'''
if model._optimizer is not None:
if model._device_type == caffe2_pb2.CPU or model._device_type == caffe2_pb2.IDEEP:
return [model._optimizer.get_cpu_blob_name('lr')]
elif core.IsGPUDeviceType(model._device_type):
return [model._optimizer.get_gpu_blob_name('lr', gpu, '')
for gpu in model._devices]
else:
raise Exception(
"Unsupported device type : {}".format(model._device_type)
)
else:
lr_blob_names = []
for op in model.net.Proto().op:
if op.type == "LearningRate":
lr_blob_names.append(op.output(0))
return lr_blob_names
def _Broadcast(devices, model, net, param, use_nccl=False):
# Copy params from gpu_0 to other
master_dev = devices[0]
if use_nccl:
if _IsGPUBlob(model, param):
master_device_opt = core.DeviceOption(model._device_type, master_dev)
with core.DeviceScope(master_device_opt):
# Note that the root is the root _rank_ and not the root
# _device_. Thus we always use root=0, regardless of the
# devices used.
net.NCCLBroadcast(
list(viewvalues(model._device_grouped_blobs[param])),
list(viewvalues(model._device_grouped_blobs[param])),
root=0,
)
return
for dev_idx in devices[1:]:
if _IsGPUBlob(model, param):
device_opt = core.DeviceOption(workspace.GpuDeviceType, dev_idx)
else:
device_opt = core.DeviceOption(caffe2_pb2.IDEEP, 0) if _IsIDEEPBlob(model, param) else \
core.DeviceOption(caffe2_pb2.CPU, 0)
with core.DeviceScope(device_opt):
net.Copy(
model._device_grouped_blobs[param][master_dev],
model._device_grouped_blobs[param][dev_idx]
)
def _AllReduce(devices, model, net, param, use_nccl=False, control_input=None):
blobs_group = list(viewvalues(model._device_grouped_blobs[param]))
if model._device_type == caffe2_pb2.CUDA and use_nccl:
# TODO: for _shared_model, do only NCCLReduce
model.NCCLAllreduce(
blobs_group, blobs_group, control_input=control_input
)
return
if model._device_type == workspace.GpuDeviceType:
p2p_access_pattern = workspace.GetGpuPeerAccessPattern()
else:
p2p_access_pattern = None
def sumN(*dev_indices):
"""Create a Sum op for 2 or more blobs on different devices.
Saves the result on the first device.
Args:
dev_indices -- a list of device indices, which can be translated into
CUDA identifiers with model._devices
"""
devices = [model._devices[idx] for idx in dev_indices]
blobs = [blobs_group[idx] for idx in dev_indices]
device_opt = core.DeviceOption(model._device_type, devices[0])
with core.DeviceScope(device_opt):
for i, peer in enumerate(devices):
if i == 0:
continue # Skip the first device
if p2p_access_pattern is not None and p2p_access_pattern.size and not p2p_access_pattern[
devices[0], peer
]:
# Copy from peer to d0
blobs[i] = model.Copy(
blobs[i],
'gpu_{}/{}_gpu{}_copy'.format(devices[0], param, peer)
)
net.Sum(blobs, [blobs[0]], name='dpm')
if len(devices) == 16:
# Special tree reduction for 16 gpus, TODO generalize like in muji.py
for j in range(8):
sumN(j * 2, j * 2 + 1)
for j in range(4):
sumN(j * 4, j * 4 + 2)
for j in range(2):
sumN(j * 8, j * 8 + 4)
sumN(0, 8)
elif len(devices) == 8:
for j in range(4):
sumN(j * 2, j * 2 + 1)
for j in range(2):
sumN(j * 4, j * 4 + 2)
sumN(0, 4)
elif len(devices) == 4:
sumN(0, 1)
sumN(2, 3)
sumN(0, 2)
else:
sumN(*range(len(devices)))
# TODO: for _shared_model, no need to broadcast
_Broadcast(devices, model, net, param)
def _SyncAllParams(
devices,
model,
init_net,
net,
rendezvous,
unique_param_names,
max_concurrent_distributed_ops=4
):
if rendezvous is None or rendezvous['num_shards'] <= 1:
_SyncAllParamsSingleHost(devices, model, net, unique_param_names)
else:
_SyncAllParamsDistributed(
devices,
model,
init_net,
net,
rendezvous,
unique_param_names,
max_concurrent_distributed_ops
)
def AddBlobSync(model, blobs, net=None):
'''
Sync a blob across devices and hosts
'''
if len(blobs) == 0:
return
net = model.net if net is None else net
for b in blobs:
assert not b.startswith(model._device_prefix), \
"Provide unprefixed blob name: {}".format(b)
model._device_grouped_blobs[b] = {
d: core.BlobReference("{}_{}/{}".format(model._device_prefix, d, b))
for d in model._devices
}
_SyncAllParams(
model._devices,
model,
model.param_init_net,
net,
model._rendezvous,
set(blobs))
def AddDistributedBlobSync(model, blobs):
'''
Sync blobs across machines (but not across devices)
'''
if model._rendezvous is None:
return
synth_name = "_".join([str(b) for b in blobs])
comm_world = _CreateOrCloneCommonWorld(
model.param_init_net,
"blob_sync_cw_" + synth_name,
rendezvous=model._rendezvous,
)
model.net.Allreduce(
inputs=[comm_world] + blobs,
outputs=blobs,
engine=model._rendezvous['engine'],
)
def _SyncAllParamsDistributed(
devices,
model,
init_net,
net,
rendezvous,
unique_param_names,
max_concurrent_distributed_ops
):
assert rendezvous['num_shards'] > 1
gpu_device_opt = core.DeviceOption(model._device_type, devices[0])
cpu_device_opt = core.DeviceOption(caffe2_pb2.CPU)
ideep_device_opt = core.DeviceOption(caffe2_pb2.IDEEP)
if model._broadcast_context is None:
model._broadcast_context = CollectivesConcurrencyControl(
"broadcast",
max_concurrent_distributed_ops,
init_net,
rendezvous
)
context = model._broadcast_context
for param_name in sorted(unique_param_names):
master_param = model._device_grouped_blobs[param_name][devices[0]]
params_group = list(viewvalues(model._device_grouped_blobs[param_name]))
def broadcast(params):
comm_world, control_input = context.get_control_and_context(params)
net.Broadcast(
inputs=[comm_world] + params,
outputs=params,
name=param_name,
engine=rendezvous['engine'],
control_input=control_input
)
device_opt = gpu_device_opt if _IsGPUBlob(
model, param_name
) else ideep_device_opt if _IsIDEEPBlob(model, param_name) else cpu_device_opt
if rendezvous['engine'] == 'GLOO':
with core.DeviceScope(device_opt):
broadcast(params_group)
else:
# Copy between GPU and CPU
with core.DeviceScope(device_opt):
param_cpu = net.CopyGPUToCPU(
master_param,
str(master_param) + "cpu"
)
with core.DeviceScope(cpu_device_opt):
broadcast([param_cpu])
with core.DeviceScope(device_opt):
net.CopyCPUToGPU(param_cpu, master_param)
# Broadcast locally
_Broadcast(devices, model, net, param_name)
def _SyncAllParamsSingleHost(devices, model, net, unique_param_names):
for param in unique_param_names:
_Broadcast(devices, model, net, param)
def _AllReduceBlobs(blob_names, devices, model, net, rendezvous, use_nccl,
max_concurrent_distributed_ops):
if rendezvous is None or rendezvous['num_shards'] <= 1:
_AllReduceBlobsSingleHost(
blob_names,
devices,
model,
net,
use_nccl
)
else:
_AllReduceBlobsDistributed(
blob_names,
devices,
model,
net,
rendezvous,
max_concurrent_distributed_ops,
)
def _PruneParametersForSharing(model):
assert model._shared_model
master_prefix = "{}_{}/".format(model._device_prefix, model._devices[0])
# Remove non-master parameters so that they will not receive parameter
# update operators.
model.params = model.GetParams(master_prefix)
paramset = set(model.params)
model.param_to_grad = {
p: model.param_to_grad[p]
for p in model.param_to_grad if p in paramset
}
model.weights = [w for w in model.weights if w in paramset]
model.biases = [w for w in model.biases if w in paramset]
def _RemapParameterBlobsForSharedModel(model, all_params):
assert model._shared_model
master_prefix = "{}_{}/".format(
model._device_prefix, model._devices[0])
log.info("Remapping param blobs to master -> {}".format(master_prefix))
master_params = set(model.GetParams())
# Remove all but master params
def modify_ops(net):
ops = []
for op in net.Proto().op:
delete_op = False
# Delete ops that output non-master version of parameter
for outp in op.output:
if outp in all_params and outp not in master_params:
delete_op = True
log.debug("Delete b/c {}: {}".format(outp, str(op)))
break
if delete_op:
continue
# Remap inputs to point to the master param
for j, inp in enumerate(op.input):
if inp in all_params and inp not in master_params:
op.input[j] = master_prefix + stripBlobName(inp)
ops.append(op)
del net.Proto().op[:]
net.Proto().op.extend(ops)
modify_ops(model.param_init_net)
modify_ops(model.net)
class CollectivesConcurrencyControl(object):
"""
Creates common worlds (up to max_concurrent_context) and manage the
sequential execution of collectives that shares the same context with
cyclic control inputs.
"""
def __init__(
self,
name,
max_concurrent_context,
param_init_net,
rendezvous
):
self.name = name
self.param_init_net = param_init_net
self.max_concurrent_context = max_concurrent_context
self.counter = 0
self.common_worlds = []
self.control_inputs = []
self.rendezvous = rendezvous
def get_control_and_context(self, control_output_blob):
common_world, control_input = [None, None]
current_slot = self.counter % self.max_concurrent_context
if len(self.common_worlds) < self.max_concurrent_context:
common_world = _CreateOrCloneCommonWorld(
self.param_init_net,
"{}_{}_cw".format(self.name, current_slot),
rendezvous=self.rendezvous,
)
self.common_worlds.append(common_world)
self.control_inputs.append(control_output_blob)
else:
common_world = self.common_worlds[current_slot]
control_input = self.control_inputs[current_slot]
self.control_inputs[current_slot] = control_output_blob
self.counter += 1
return common_world, control_input
def _AllReduceBlobsDistributed(
blob_names,
devices,
model,
net,
rendezvous,
max_concurrent_distributed_ops,
):
num_workers = model.net.Proto().num_workers
assert num_workers > 1, "Please specify more than 1 worker"
all_reduce_engine = rendezvous['engine']
master_device_opt = core.DeviceOption(model._device_type, devices[0])
reducing_device_opt = master_device_opt
context = CollectivesConcurrencyControl(
"allreduce",
max_concurrent_distributed_ops,
model.param_init_net,
rendezvous
)
nccl_control_blob = None
for blob_name in blob_names:
master_blob = model._device_grouped_blobs[blob_name][devices[0]]
blobs_group = list(viewvalues(model._device_grouped_blobs[blob_name]))
assert master_blob in blobs_group
# Remark: NCCLReduce does not support in-place modifications
# so we need a temporary blob
reduced_blob = str(master_blob) + "_red"
def allreduce(blobs, **kwargs):
with core.DeviceScope(reducing_device_opt):
comm_world, control_input = \
context.get_control_and_context(blobs[0])
net.Allreduce(
inputs=[comm_world] + blobs,
outputs=blobs,
name=blob_name,
engine=all_reduce_engine,
control_input=control_input,
**kwargs
)
if rendezvous['engine'] == 'GLOO':
# With Gloo cross GPU and cross machine allreduce
# can be executed in a single operation.
# Try to use GPUDirect if transport == ibverbs.
allreduce(
blobs_group,
gpu_direct=(rendezvous.get("transport", None) == "ibverbs"),
)
else:
# Step 1: sum blobs from local GPUs to master GPU
with core.DeviceScope(master_device_opt):
model.ConstantFill(master_blob, reduced_blob, value=0.0)
# Temp fix since NCCLReduce does not work
net.NCCLAllreduce(
blobs_group,
blobs_group,
control_input=nccl_control_blob,
)
nccl_control_blob = blobs_group[0]
net.Copy(master_blob, reduced_blob)
# Step 2: allreduce between all hosts, between master GPUs
allreduce([reduced_blob])
with core.DeviceScope(master_device_opt):
net.Copy(reduced_blob, master_blob)
# Step 3: broadcast locally
_Broadcast(devices, model, net, blob_name)
def _AllReduceBlobsSingleHost(blob_names, devices, model, net, use_nccl):
"""Performs NCCL AllReduce to distribute blobs to all the GPUs."""
if len(devices) == 1:
return
# Now we need to Allreduce blobs on all the GPUs.
# Pick GPU #0 as a master GPU.
master_device_opt = core.DeviceOption(model._device_type, devices[0])
last_out = None
concatenated_idx = set()
for blob_name in blob_names:
# Group by blob_name for reduce.
blobs_group = list(viewvalues(model._device_grouped_blobs[blob_name]))
if len(blobs_group) == 1:
# Non-reducible
continue
assert len(blobs_group) == len(devices), \
"Each GPU from {}, should have a copy of {}.".format(
devices, blob_name)
if _IsGPUBlob(model, blob_name):
with core.DeviceScope(master_device_opt):
if not isinstance(blobs_group[0], core.GradientSlice):
_AllReduce(
devices, model, net, blob_name, use_nccl, last_out
)
# last_out is used to serialize the execution of nccls
last_out = blobs_group[0]
else:
# Sparse gradients: all-gather for indices and values
master_ns = "{}_{}".format(model._device_prefix, devices[0])
'''
Skip if we have already copied concatenated indices
to the indices of GradientSlice. This happens when two
or more grad blobs are gathered with the same indices
blob
'''
skip_idx_concat = False
for g in blobs_group:
if g.indices in concatenated_idx:
skip_idx_concat = True
if not skip_idx_concat:
grad_idx_concat, _ = net.Concat(
[g.indices for g in blobs_group],
["{}/{}_index_concat".format(master_ns, blob_name),
"{}/{}_index_splitinfo".format(master_ns, blob_name)],
axis=0,
name="note:data_parallel_model")
for gpu, g in viewitems(model._device_grouped_blobs[blob_name]):
device_opt = core.DeviceOption(model._device_type, gpu)
with core.DeviceScope(device_opt):
model.Copy(grad_idx_concat, g.indices)
concatenated_idx.add(g.indices)
grad_val_concat, _ = net.Concat(
[g.values for g in blobs_group],
["{}/{}_val_concat".format(master_ns, blob_name),
"{}/{}_val_splitinfo".format(master_ns, blob_name)],
axis=0, name="note:data_parallel_model")
for gpu, g in viewitems(model._device_grouped_blobs[blob_name]):
device_opt = core.DeviceOption(model._device_type, gpu)
with core.DeviceScope(device_opt):
model.Copy(grad_val_concat, g.values)
elif _IsIDEEPBlob(model, blob_name):
assert not isinstance(blobs_group[0], core.GradientSlice), \
"Synchronizing gradient slices not supported"
with core.DeviceScope(core.DeviceOption(caffe2_pb2.IDEEP)):
net.Sum(blobs_group, [blobs_group[0]])
if not model._shared_model:
_Broadcast(devices, model, net, blob_name)
else:
assert not isinstance(blobs_group[0], core.GradientSlice), \
"Synchronizing gradient slices not supported"
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
# Poor man's allreduce
net.Sum(blobs_group, [blobs_group[0]])
if not model._shared_model:
_Broadcast(devices, model, net, blob_name)
def _BroadcastComputedParams(devices, model, rendezvous, use_nccl=False):
if rendezvous is None:
_BroadcastComputedParamsSingleHost(devices, model, use_nccl)
else:
_BroadcastComputedParamsDistributed(devices, model, rendezvous, use_nccl)
def _BroadcastComputedParamsDistributed(
devices,
model,
rendezvous,
use_nccl=False
):
_BroadcastComputedParamsSingleHost(devices, model, use_nccl)
log.warn("Distributed broadcast of computed params is not implemented yet")
def _BroadcastComputedParamsSingleHost(devices, model, use_nccl=False):
'''
Average computed params over all devices
'''
if len(devices) == 1:
return
for param_name in model._computed_param_names:
# Copy from master to others -- averaging would be perhaps better,
# but currently NCCLAllReduce is too prone to deadlock
_Broadcast(devices, model, model.net, param_name, use_nccl)
def _GetReverseOrderedGrads(model):
'''
Returns the gradients in reverse order (namespace stripped),
for the optimal synchronization order.
'''
return list(reversed(model._grad_names))
# A helper function to extract a parameter's name
def stripBlobName(param):
# Format is "a/b/c/d" -> "b/c/d"
if isinstance(param, core.GradientSlice):
return stripBlobName(param.indices) + ":" + stripBlobName(param.values)
else:
name = str(param)
return name[name.index(scope._NAMESCOPE_SEPARATOR) + 1:]
def _AnalyzeOperators(model):
'''
Look at all the operators and check that they do not cross device scopes
'''
for op in model.Proto().op:
if "NCCL" in op.type or "Copy" in op.type or "Concat" in op.type:
continue
if "Sum" == op.type and op.name == "dpm":
continue
if "Allreduce" in op.type and "GLOO" in op.engine:
continue
op_dev = op.device_option
op_gpu = op_dev.device_id
# This avoids failing on operators that are only for CPU
if not core.IsGPUDeviceType(op_dev.device_type):
continue
namescope = "{}_{}/".format(model._device_prefix, op_gpu)
for inp in list(op.input) + list(op.output):
if inp.startswith("{}_".format(model._device_prefix)
) and not inp.startswith(namescope):
raise Exception(
"Blob {} of op {}, should have namescope {}. Op: {}".format(
inp,
op.type,
"{}_{}/".format(model._device_prefix, op_gpu),
str(op),
)
)
def _InferBlobDevice(model):
'''
Assign blob to device option based on the operator outputing it
'''
mapping = {}
def map_ops(proto):
for op in proto.op:
device_option = op.device_option
if op.type == "Iter":
# Hack for Iters which have blob in CPU context
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = caffe2_pb2.CPU
for b in list(op.input) + list(op.output):
if b not in mapping:
mapping[b] = device_option
if op.type.startswith('RecurrentNetwork'):
step_args = [a for a in op.arg if a.name.endswith("step_net")]
for step_arg in step_args:
map_ops(step_arg.n)
map_ops(model.param_init_net.Proto())
map_ops(model.net.Proto())
model._blob_to_device = mapping
def _IsIDEEPBlob(model, blob_name):
if blob_name in model._blob_to_device:
return model._blob_to_device[blob_name].device_type == caffe2_pb2.IDEEP
else:
blob_name = "{}_{}/{}".format(
model._device_prefix, model._devices[0], blob_name
)
if blob_name not in model._blob_to_device:
return model._device_type == caffe2_pb2.IDEEP
return model._blob_to_device[blob_name].device_type == caffe2_pb2.IDEEP
def _IsGPUBlob(model, blob_name):
if blob_name in model._blob_to_device:
return core.IsGPUDeviceType(model._blob_to_device[blob_name].device_type)
else:
blob_name = "{}_{}/{}".format(
model._device_prefix, model._devices[0], blob_name
)
if blob_name not in model._blob_to_device:
return core.IsGPUDeviceType(model._device_type)
return core.IsGPUDeviceType(model._blob_to_device[blob_name].device_type)
def _GroupByDevice(model, devices, params, non_data_params):
'''
Groups blobs by device, returning a map of [blobname] = {0: BlobRef, 1: ..}.
Returns ordered dictionary, ensuring the original order.
'''
grouped = OrderedDict()
# Only consider params that were created to be "data parallel"
params = params[len(non_data_params):]
for _i, p in enumerate(params):
assert isinstance(p, core.BlobReference) or \
isinstance(p, core.GradientSlice), \
"Param {} is not BlobReference or GradientSlice".format(p)
name = stripBlobName(p)
gpuid = None
if isinstance(p, core.BlobReference):
gpuid = int(p.GetNameScope().split("_")[1].split("/")[0])
assert "{}_{}/".format(model._device_prefix, gpuid) in p.GetNameScope(),\
"Param {} expected to have namescope '{}_{}'".format(str(p), model._device_prefix, gpuid)
else:
gpuid = int(p.indices.GetNameScope().split("_")[1].split("/")[0])
assert "{}_{}/".format(model._device_prefix, gpuid) in p.indices.GetNameScope(),\
"Indices {} expected to have namescope '{}_{}'".format(str(p), model._device_prefix, gpuid)
assert "{}_{}/".format(model._device_prefix, gpuid) in p.values.GetNameScope(),\
"Values {} expected to have namescope '{}_{}'".format(str(p), model._device_prefix, gpuid)
if name not in grouped:
grouped[name] = {}
grouped[name][gpuid] = p
return grouped
def _ValidateParams(params):
set_params = set(params)
if len(params) > len(set_params):
dupes = []
sp = sorted(params)
for j, p in enumerate(sp):
if j > 0 and sp[j - 1] == p:
dupes.append(p)
assert len(params) == len(set_params), \
"Duplicate entries in params: {}".format(dupes)
def _ComputeBlobsToSync(model):
'''
We sync all blobs that are generated by param init net and
are 'data parallel', i.e assigned to a device
'''
sync_names = set()
# We don't sync params if the model is shared
if model._shared_model:
blobs_to_sync = [str(p) for p in model.GetComputedParams('')]
sync_names = [stripBlobName(p) for p in blobs_to_sync]
else:
blobs_to_sync = []
for op in model.param_init_net.Proto().op:
dp_outputs = [
o for o in op.output
if o.startswith("{}_".format(model._device_prefix))
]
sync_names.update([stripBlobName(o) for o in dp_outputs])
blobs_to_sync.extend(dp_outputs)
# Sanity check
diff = set(model._param_names) - sync_names
assert diff == set(), \
"Some params not instantiated in param init net: {}".format(diff)
# Remove duplicates and sort
prefixlen = len(model._device_prefix) + 1
def extract_sort_key(b):
# Sort first based on device id, and then by whole string
deviceid = int(b[prefixlen:b.index(scope._NAMESCOPE_SEPARATOR)])
return (deviceid, b)
blobs_to_sync = sorted(
list(set(blobs_to_sync)),
key=extract_sort_key)
blobs_to_sync = [core.BlobReference(b) for b in blobs_to_sync]
return (blobs_to_sync, sync_names)
def _OptimizeGradientMemorySimple(model, losses_by_gpu, devices):
log.warning("------- DEPRECATED API, please use " +
"data_parallel_model.OptimizeGradientMemory() ----- ")
for device in devices:
namescope = "{}_{}/".format(model._device_prefix, device)
model.net._net = memonger.share_grad_blobs(
model.net,
losses_by_gpu[device],
set(viewvalues(model.param_to_grad)),
namescope,
share_activations=False,
)
def _AddDynamicMemoryOptimization(model, blobs_to_keep, devices):
blobs_to_keep_all_devices = set()
if blobs_to_keep is not None:
for device in devices:
for blob_name in blobs_to_keep:
blobs_to_keep_all_devices.add(
"{}_{}/{}".format(model._device_prefix, device, blob_name)
)
if model._rendezvous is not None:
# GLOO operators expect the tensor addresses to remain same over
# iterations so we need to remove param grads from the dynamic memory
# management.
blobs_to_keep_all_devices.update(
[str(b) for b in viewvalues(model.param_to_grad)]
)
model.net._net = memonger.release_blobs_when_used(
model.net.Proto(),
blobs_to_keep_all_devices
)
def OptimizeGradientMemory(model,
input_shapes,
excluded_blobs,
recycle_activations):
"""
Optimize memory usage of the backward pass by recycling blobs for gradient
inputs that have been 'used'.
input_shapes: dict of blob name to shape for the inputs of the model.
Pass empty dictionary if not known.
excluded_blobs: list of blobs that cannot be recycled. These are blobs
that you will access externally.
recycle_activations: whether to also recycle forward pass activations
"""
if input_shapes is not None:
input_shapes_all_devices = {}
for b, shp in viewitems(input_shapes):
for d in model._devices:
input_shapes_all_devices["{}_{}/{}".
format(model._device_prefix, d, b)] = shp
(shapes, types) = workspace.InferShapesAndTypes(
[model.param_init_net, model.net],
input_shapes_all_devices,
)
else:
shapes = None
for device in model._devices:
namescope = "{}_{}/".format(model._device_prefix, device)
excluded_blobs_by_device = set(namescope + b for b in excluded_blobs)
model.net._net = memonger.share_grad_blobs(
model.net,
model._losses_by_gpu[device],
set(viewvalues(model.param_to_grad)),
namescope,
dont_share_blobs=excluded_blobs_by_device,
share_activations=recycle_activations,
blob_shapes=shapes,
)
def _CreateOrCloneCommonWorld(
net,
common_world_blob,
rendezvous,
name=None,
timeout_sec=None):
if timeout_sec is None:
timeout_sec = _DEFAULT_TIMEOUT_SEC
timeout_ms = timeout_sec * 1000
# Check if there is an existing CreateCommonWorld
# with the same timeout we're looking for. If so,
# we can clone it instead of creating a new one.
existing = None
for op in net.Proto().op:
if op.type != "CreateCommonWorld":
continue
# Find common world timeout
op_timeout_ms = -1
for arg in op.arg:
if arg.name == 'timeout_ms':
op_timeout_ms = arg.i
break
if op_timeout_ms != timeout_ms:
continue
# This common world was created with the same timeout we're
# looking for, so we can clone it
existing = op.output[0]
break
if name is None:
name = "{}_op".format(common_world_blob)
if existing is not None:
comm_world = net.CloneCommonWorld(
[existing],
common_world_blob,
name=name,
engine=rendezvous['engine'],
)
else:
kwargs=dict()
if 'transport' in rendezvous:
kwargs['transport'] = rendezvous['transport']
if 'interface' in rendezvous:
kwargs['interface'] = rendezvous['interface']
if 'mpi_rendezvous' in rendezvous:
kwargs['mpi_rendezvous'] = rendezvous['mpi_rendezvous']
comm_world = net.CreateCommonWorld(
rendezvous['kv_handler'] or [],
common_world_blob,
name=name,
size=rendezvous['num_shards'],
rank=rendezvous['shard_id'],
engine=rendezvous['engine'],
timeout_ms=timeout_ms,
**kwargs
)
return comm_world
def _RunComparison(model, blob_name, device=None):
if device is None:
device = model._blob_to_device[blob_name]
with core.DeviceScope(device):
rendezvous = model._rendezvous
if rendezvous is None or rendezvous['num_shards'] == 1:
return True
test_data_arr = np.zeros(rendezvous['num_shards']).astype(np.float32)
test_data_arr[rendezvous['shard_id']] = 1
workspace.FeedBlob("compare_arr", test_data_arr)
comparison_net = core.Net("allcompare_net")
kwargs=dict()
if 'mpi_rendezvous' in rendezvous:
kwargs['mpi_rendezvous'] = rendezvous['mpi_rendezvous']
comm_world = comparison_net.CreateCommonWorld(
rendezvous['kv_handler'] or [],
"initial_sync",
name=model.net.Proto().name + ".cw_master_select",
size=rendezvous['num_shards'],
rank=rendezvous['shard_id'],
engine=rendezvous['engine'],
**kwargs
)
blob_name_checksum = blob_name + "_checksum"
comparison_net.SumSqrElements(
[blob_name], [blob_name_checksum], average=False
)
blob_name_gather = blob_name + "_gather"
comparison_net.Mul(
inputs=["compare_arr", blob_name_checksum],
outputs=blob_name_gather,
broadcast=1
)
comparison_net.Allreduce(
inputs=[comm_world, blob_name_gather],
outputs=[blob_name_gather],
engine=rendezvous['engine'],
)
workspace.RunNetOnce(comparison_net)
gather_arr = workspace.FetchBlob(blob_name_gather)
baseline = gather_arr[0]
for i in range(rendezvous['num_shards']):
assert gather_arr[i] == baseline, \
"allcompare failed on shard {}.".format(rendezvous['shard_id'])
return True
def _InterleaveOps(model):
'''
Data Parallel Model creates a net with ops in one device grouped together.
This will interleave the ops so that each op for each device is next
to each other in the net. Kind of like combining decks of cards. This
ensures that progress is made along the critical path roughly concurrently
for each device, which is important due to the extra intra-node
synchronization required for multi-device batch normalization.
'''
orig_ops = list(model.net.Proto().op)
num_devices = len(model._devices)
num_ops_per_dev = len(orig_ops) // num_devices
assert num_devices * num_ops_per_dev == len(orig_ops), \
'Number of ops per device in original net is not uniform'
new_ops = []
ops = {d: [] for d in range(num_devices)}
for op in orig_ops:
ops[op.device_option.device_id].append(op)
for j in range(num_ops_per_dev):
tp = None
for d in model._devices:
if tp is None:
tp = ops[d][j].type
new_ops.append(ops[d][j])
# Sanity
assert ops[d][j].type == tp, \
"Type mismatch {} / {}".format(tp, ops[d][j].type)
del model.net.Proto().op[:]
model.net.Proto().op.extend(new_ops)
def _CPUInterDeviceBatchNormalization(model):
orig_ops = list(model.net.Proto().op)
new_ops = []
num_devices = len(model._devices)
batch_norm_ops = []
injected_ops = []
spatial_bn_phase = False
sums_blobs = []
sumsq_blobs = []
name = []
input_blob_name = None
spatial_bn_gradient_phase = False
scale_grad_blobs = []
bias_grad_blobs = []
def _cpuReduce(param, input_blobs, destination_blobs):
"""
Reduce results from multiple cpus and distributes the results back
to each device. This is done by copying values to cpu_0 and summing
them. The cpu_0 result is then copied back to each of the devices.
param: the name of the data (blobs) to reduce
input_blobs: the list of blobs to reduce
destination_blobs: list of blobs to copy the result to
"""
added_ops = []
result_blob = "cpu_0/" + param + "_combined"
added_ops.append(core.CreateOperator("Sum", input_blobs, result_blob))
for blob in destination_blobs:
added_ops.append(core.CreateOperator("Copy", result_blob, blob))
return added_ops
for op in orig_ops:
if op.type != 'SpatialBN' and op.type != 'SpatialBNGradient':
if spatial_bn_phase:
new_ops.extend(injected_ops)
new_ops.append(
core.CreateOperator("Sum",
sums_blobs,
input_blob_name + "_sums_combined"))
new_ops.append(
core.CreateOperator("Sum",
sumsq_blobs,
input_blob_name + "_sumsq_combined"))
new_ops.extend(batch_norm_ops)
injected_ops = []
batch_norm_ops = []
sums_blobs = []
sumsq_blobs = []
spatial_bn_phase = False
input_blob_name = None
elif spatial_bn_gradient_phase:
new_ops.extend(injected_ops)
new_ops.extend(_cpuReduce(
stripBlobName(scale_grad_blobs[0]),
scale_grad_blobs,
scale_grad_blobs))
new_ops.extend(_cpuReduce(
stripBlobName(bias_grad_blobs[0]),
bias_grad_blobs,
bias_grad_blobs))
new_ops.extend(batch_norm_ops)
injected_ops = []
batch_norm_ops = []
scale_grad_blobs = []
bias_grad_blobs = []
spatial_bn_gradient_phase = False
new_ops.append(op)
elif op.type == 'SpatialBN':
spatial_bn_phase = True
if input_blob_name is None:
input_blob_name = op.input[0]
name = op.input[0]
injected_ops.append(
core.CreateOperator(
"ChannelStats",
name,
[name + "_sums", name + "_sumsq"]))
sums_blobs.append(name + "_sums")
sumsq_blobs.append(name + "_sumsq")
op.input.append(input_blob_name + "_sums_combined")
op.input.append(input_blob_name + "_sumsq_combined")
op.arg.extend([utils.MakeArgument("num_batches", num_devices)])
batch_norm_ops.append(op)
elif op.type == 'SpatialBNGradient':
spatial_bn_gradient_phase = True
injected_ops.append(
core.CreateOperator("ChannelBackpropStats",
[op.input[0], op.input[3], op.input[4],
op.input[2]],
[op.output[1], op.output[2]]))
scale_grad_blobs.append(op.output[1])
bias_grad_blobs.append(op.output[2])
op.arg.extend([utils.MakeArgument("num_batches", num_devices)])
op.input.extend([op.output[1], op.output[2]])
batch_norm_ops.append(op)
assert not spatial_bn_phase, \
"Net modification for cpu inter-device batch normalization failed"
del model.net.Proto().op[:]
model.net.Proto().op.extend(new_ops)
def _GPUInterDeviceBatchNormalization(model):
orig_ops = list(model.net.Proto().op)
new_ops = []
num_devices = len(model._devices)
batch_norm_ops = []
injected_ops = []
spatial_bn_phase = False
sums_blobs = []
sumsq_blobs = []
name = []
input_blob_name = None
spatial_bn_gradient_phase = False
scale_grad_blobs = []
bias_grad_blobs = []
master_device = "cpu_0"
master_device_option = core.DeviceOption(caffe2_pb2.CPU)
def _gpuReduce(param, num_devices, master_device, result_blobs=None):
"""
Reduces results from multiple gpus and distributes the results back
to each device. This is done by copying values to the master device
and summing them. The master device result is then copied back to
each of the devices.
param: the name of the data (blobs) to reduce
num_devices: the number of devices
master_device: the device to copy/compute values on
result_blobs: optional list of result blobs to copy to
"""
added_ops = []
source_blobs = []
destination_blobs = []
if result_blobs is None:
result_blobs = [
"gpu_{}/{}_combined".format(i, param) for i in range(num_devices)
]
for i in range(num_devices):
device_option = core.DeviceOption(model._device_type, i)
source_blobs.append("gpu_{}/{}".format(i, param))
destination_blobs.append(
"{}/{}_gpu_{}_copy".format(master_device, param, i))
added_ops.append(
core.CreateOperator(
"CopyGPUToCPU",
source_blobs[i],
destination_blobs[i],
device_option=device_option))
added_ops.append(
core.CreateOperator(
"Sum",
destination_blobs,
"{}/{}_combined".format(master_device, param),
device_option=master_device_option))
for i in range(num_devices):
device_option = core.DeviceOption(model._device_type, i)
added_ops.append(
core.CreateOperator(
"CopyCPUToGPU",
"{}/{}_combined".format(master_device, param),
result_blobs[i],
device_option=device_option))
return added_ops
for op in orig_ops:
if op.type != 'SpatialBN' and op.type != 'SpatialBNGradient':
if spatial_bn_phase:
new_ops.extend(injected_ops)
new_ops.extend(_gpuReduce(
stripBlobName(input_blob_name) + "_sums",
num_devices,
master_device,
))
new_ops.extend(_gpuReduce(
stripBlobName(input_blob_name) + "_sumsq",
num_devices,
master_device,
))
new_ops.extend(batch_norm_ops)
injected_ops = []
batch_norm_ops = []
sums_blobs = []
sumsq_blobs = []
spatial_bn_phase = False
input_blob_name = None
elif spatial_bn_gradient_phase:
new_ops.extend(injected_ops)
new_ops.extend(_gpuReduce(
stripBlobName(scale_grad_blobs[0]),
num_devices,
master_device,
scale_grad_blobs,
))
new_ops.extend(_gpuReduce(
stripBlobName(bias_grad_blobs[0]),
num_devices,
master_device,
bias_grad_blobs,
))
new_ops.extend(batch_norm_ops)
injected_ops = []
batch_norm_ops = []
scale_grad_blobs = []
bias_grad_blobs = []
spatial_bn_gradient_phase = False
new_ops.append(op)
elif op.type == 'SpatialBN':
spatial_bn_phase = True
if input_blob_name is None:
input_blob_name = op.input[0]
name = op.input[0]
device_option = core.DeviceOption(
model._device_type,
op.device_option.device_id,
)
injected_ops.append(
core.CreateOperator(
"ChannelStats",
name,
[name + "_sums", name + "_sumsq"],
device_option=device_option))
sums_blobs.append(name + "_sums")
sumsq_blobs.append(name + "_sumsq")
op.input.append(name + "_sums_combined")
op.input.append(name + "_sumsq_combined")
op.arg.extend([utils.MakeArgument("num_batches", num_devices)])
batch_norm_ops.append(op)
elif op.type == 'SpatialBNGradient':
spatial_bn_gradient_phase = True
device_option = core.DeviceOption(
model._device_type,
op.device_option.device_id,
)
injected_ops.append(
core.CreateOperator("ChannelBackpropStats",
[op.input[0], op.input[3], op.input[4],
op.input[2]],
[op.output[1], op.output[2]],
device_option=device_option))
scale_grad_blobs.append(op.output[1])
bias_grad_blobs.append(op.output[2])
op.arg.extend([utils.MakeArgument("num_batches", num_devices)])
op.input.extend([op.output[1], op.output[2]])
batch_norm_ops.append(op)
assert not spatial_bn_phase, \
"Net modification for gpu inter-device batch normalization failed"
del model.net.Proto().op[:]
model.net.Proto().op.extend(new_ops)
|