File: data_parallel_model.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (2222 lines) | stat: -rw-r--r-- 83,100 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
## @package data_parallel_model
# Module caffe2.python.data_parallel_model




from collections import OrderedDict
from future.utils import viewitems, viewkeys, viewvalues
import logging
import copy

from multiprocessing import cpu_count

from caffe2.python import \
    model_helper, dyndep, scope, workspace, core, memonger, utils
from caffe2.proto import caffe2_pb2

import numpy as np
import warnings

dyndep.InitOpsLibrary("@/caffe2/caffe2/contrib/gloo:gloo_ops")

# We only import nccl operators when the machine has GPUs
# Otherwise the binary can be compiled with CPU-only mode, and
# will not be able to find those modules
if workspace.NumGpuDevices() > 0:
    dyndep.InitOpsLibrary("@/caffe2/caffe2/contrib/nccl:nccl_ops")
    dyndep.InitOpsLibrary("@/caffe2/caffe2/contrib/gloo:gloo_ops_gpu")

log = logging.getLogger("data_parallel_model")
log.setLevel(logging.INFO)

_DEFAULT_TIMEOUT_SEC = 30
_DEFAULT_BARRIER_NET_TIMEOUT_SEC = 300


def Parallelize_GPU(*args, **kwargs):
    kwargs['cpu_device'] = False
    Parallelize(*args, **kwargs)


def Parallelize_CPU(*args, **kwargs):
    kwargs['cpu_device'] = True
    Parallelize(*args, **kwargs)

def Parallelize_iDeep(*args, **kwargs):
    kwargs['ideep'] = True
    Parallelize(*args, **kwargs)

def Parallelize(
    model_helper_obj,
    input_builder_fun,
    forward_pass_builder_fun,
    param_update_builder_fun=None,
    optimizer_builder_fun=None,
    post_sync_builder_fun=None,
    pre_grad_net_transformer_fun=None,
    net_transformer_fun=None,
    devices=None,
    rendezvous=None,
    net_type='dag',
    broadcast_computed_params=True,
    optimize_gradient_memory=False,
    dynamic_memory_management=False,
    blobs_to_keep=None,
    use_nccl=False,
    max_concurrent_distributed_ops=16,
    cpu_device=False,
    ideep=False,
    num_threads_per_device=4,
    shared_model=False,
    combine_spatial_bn=False,
    barrier_net_timeout_sec=_DEFAULT_BARRIER_NET_TIMEOUT_SEC,
):
    '''
    Function to create a model that can run on many GPUs or CPUs.
      model_helper_obj: an object of ModelHelper
      input_builder_fun:
                         Function that adds the input operators
                         Note: Remember to instantiate reader outside of this
                         function so all devices share same reader object.
                         Signature:  input_builder_fun(model)
      forward_pass_builder_fun:
                        Function to add the operators to the model.
                        Must return list of loss-blob references that
                        are used to build the gradient. Loss scale parameter
                        is passed, as you should scale the loss of your model
                        by 1.0 / the total number of devices.
                        Signature: forward_pass_builder_fun(model, loss_scale)
      param_update_builder_fun:
                        Function that adds operators that are run after
                        gradient update, such as updating the weights and
                        weight decaying. This is called for each GPU separately.
                        Signature: param_update_builder_fun(model)
      optimizer_builder_fun:
                        Alternative to param_update_builder_fun, allows one
                        to add an optimizer for the whole model. Called only
                        once, without name or devicescope.
      net_transformer_fun:
                        Optional function to transform the network after the
                        network is built. It will be called once (NOT once per
                        GPU.)
                        Signature:
                        net_transformer_fun(
                            model, num_devices, device_prefix, device_type)
      pre_grad_net_transformer_fun:
                        Optional function to transform the network similar to
                        net_transformer_fun, but happens before gradient ops
                        been add.
                        Signature: pre_grad_net_transformer_fun(model)
      post_sync_builder_fun:
                        Function applied after initial parameter sync has been
                        completed, such as keeping multi-precision parameters
                        in sync.
                        Signature: post_sync_builder_fun(model)
      devices:          List of GPU ids, such as [0, 1, 2, 3],
      rendezvous:       used for rendezvous in distributed computation, if None
                        then only one node is used. To create rendezvous,
                        use <TBD>.
      net_type:         Network type
      optimize_gradient_memory: whether to apply 'memonger' to share blobs
      shared_model      (only for CPU) use same parameters on each device
                        in gradient computation to reduce memory footprint.
      dynamic_memory_management: Whether to apply dynamic memory optimization
                        by freeing unused blobs. The underlying (de)allocation
                        uses cached allocator. For GPU training PLEASE MAKE SURE
                        caffe2_cuda_memory_pool is set.
      blobs_to_keep :   A list of blob names to keep and don't free during
                        dynamic memory optimization (for example loss blob).
      cpu_device        Use CPU instead of GPU.
      ideep             Use ideep.
      combine_spatial_bn:
                        When set to True, applies batch normalization across
                        all devices within the node. If False, batch
                        normalization will be done separately for each device.
                        This option is currently only supported on the CPU.
      barrier_net_timeout_sec:
                        The timeout in seconds of the barrier net, which is run
                        to synchronize shards before a training epoch starts.
                        Defaults to 300 seconds.
    '''
    assert scope.CurrentDeviceScope() is None \
        or scope.CurrentDeviceScope().device_type == caffe2_pb2.CPU, \
        "Parallelize must be called without device-scope, \
        device scope was: {}".format(scope.CurrentDeviceScope())

    if devices is None:
        if not (cpu_device or ideep):
            devices = list(range(0, workspace.NumCudaDevices()))
        else:
            devices = list(range(0, cpu_count()))

    if not (cpu_device or ideep):
        for gpu in devices:
            if gpu >= workspace.NumGpuDevices():
                log.warning("** Only {} GPUs available, GPUs {} requested".format(
                    workspace.NumGpuDevices(), devices))
                break
        model_helper_obj._device_type = workspace.GpuDeviceType
        model_helper_obj._device_prefix = "gpu"
        model_helper_obj._shared_model = False
        device_name = "GPU"
        assert shared_model is False, "Shared model only supported on CPU"
    elif ideep:
        model_helper_obj._device_type = caffe2_pb2.IDEEP
        model_helper_obj._device_prefix = "ideep"
        device_name = "IDEEP"
        model_helper_obj._shared_model = shared_model
        if shared_model and rendezvous is not None:
            assert "Shared model only supported on single-node currently"
    else:
        model_helper_obj._device_type = caffe2_pb2.CPU
        model_helper_obj._device_prefix = "cpu"
        device_name = "CPU"
        model_helper_obj._shared_model = shared_model
        if shared_model and rendezvous is not None:
            assert "Shared model only supported on single-node currently"

    log.info("Parallelizing model for devices: {}".format(devices))
    extra_workers = 8 if rendezvous is not None else 0  # best-guess
    num_workers = len(devices) * num_threads_per_device + extra_workers
    max_concurrent_distributed_ops =\
        min(max_concurrent_distributed_ops, num_workers - 1)
    model_helper_obj.net.Proto().num_workers = num_workers
    model_helper_obj.net.Proto().type = net_type

    # Store some information in the model -- a bit ugly
    model_helper_obj._devices = devices
    model_helper_obj._rendezvous = rendezvous
    model_helper_obj._sync_barrier_net = None

    model_helper_obj._broadcast_context = None
    model_helper_obj._grad_names = []

    assert isinstance(model_helper_obj, model_helper.ModelHelper)

    # Keep track of params that were in the model before: they are not
    # data parallel, so we need to handle them separately
    non_datapar_params = copy.copy(model_helper_obj.params)

    # Add input and model
    log.info("Create input and model training operators")

    losses_by_gpu = {}
    num_shards = 1 if rendezvous is None else rendezvous['num_shards']
    loss_scale = 1.0 / (len(devices) * num_shards)

    has_parameter_updates = param_update_builder_fun is not None or \
        optimizer_builder_fun is not None
    assert not (
        param_update_builder_fun is not None and
        optimizer_builder_fun is not None
    ), 'Can only specify one of param_update_builder_fun, optimizer_builder_fun'

    # Check that a model that is used for validation/testing has
    # init_params False, otherwise running the param init net will overwrite
    # synchronized values by the training net
    if not has_parameter_updates and model_helper_obj.init_params:
        log.warning('')
        log.warning("############# WARNING #############")
        log.warning("Model {}/{} is used for testing/validation but".format(
            model_helper_obj.name, model_helper_obj))
        log.warning("has init_params=True!")
        log.warning("This can conflict with model training.")
        log.warning("Please ensure model = ModelHelper(init_params=False)")
        log.warning('####################################')
        log.warning('')
        # TODO: make into assert

    for device in devices:
        device_opt = core.DeviceOption(model_helper_obj._device_type, device)
        with core.DeviceScope(device_opt):
            with core.NameScope("{}_{}".format(model_helper_obj._device_prefix,
                                               device)):
                log.info("Model for {} : {}".format(device_name, device))
                input_builder_fun(model_helper_obj)
                losses = forward_pass_builder_fun(model_helper_obj, loss_scale)
                # Losses are not needed for test net
                if has_parameter_updates:
                    assert isinstance(losses, list), \
                        'Model builder function must return list of loss blobs'
                    for loss in losses:
                        assert isinstance(loss, core.BlobReference), \
                            'Model builder func must return list of loss blobs'

                losses_by_gpu[device] = losses
    _ValidateParams(model_helper_obj.params)

    # Create parameter map
    model_helper_obj._device_grouped_blobs =\
        _GroupByDevice(model_helper_obj, devices,
                       model_helper_obj.params, non_datapar_params)

    # computed params
    computed_params_grouped =\
        _GroupByDevice(model_helper_obj, devices,
                       model_helper_obj.GetComputedParams(''), [])
    model_helper_obj._device_grouped_blobs.update(computed_params_grouped)

    model_helper_obj._param_names =\
        list(viewkeys(model_helper_obj._device_grouped_blobs))
    model_helper_obj._computed_param_names =\
        list(viewkeys(computed_params_grouped))

    if pre_grad_net_transformer_fun:
        pre_grad_net_transformer_fun(model_helper_obj)

    if has_parameter_updates:
        log.info("Adding gradient operators")
        _AddGradientOperators(devices, model_helper_obj, losses_by_gpu)

    if net_transformer_fun:
        net_transformer_fun(
            model_helper_obj,
            len(devices),
            model_helper_obj._device_prefix,
            model_helper_obj._device_type)

    if not has_parameter_updates:
        log.info("Parameter update function not defined --> only forward")
        _InferBlobDevice(model_helper_obj)
        return

    if combine_spatial_bn:
        assert(has_parameter_updates), \
            'combine_spatial_bn should only be used for train model'
        _InterleaveOps(model_helper_obj)
        if cpu_device:
            _CPUInterDeviceBatchNormalization(model_helper_obj)
        else:
            _GPUInterDeviceBatchNormalization(model_helper_obj)

    _ValidateParams(model_helper_obj.params)

    # Group gradients by device and register to blob lookup
    param_to_grad = model_helper_obj.param_to_grad
    grads_ordered = [param_to_grad[p] for p in
                     model_helper_obj.params if p in param_to_grad]
    non_datapar_grads = [param_to_grad[p] for p in non_datapar_params]

    gradients_grouped = _GroupByDevice(
        model_helper_obj,
        devices,
        grads_ordered,
        non_datapar_grads
    )
    model_helper_obj._device_grouped_blobs.update(gradients_grouped)
    model_helper_obj._grad_names = list(viewkeys(gradients_grouped))
    model_helper_obj._losses_by_gpu = losses_by_gpu

    _InferBlobDevice(model_helper_obj)

    log.info("Add gradient all-reduces for SyncSGD")
    if broadcast_computed_params:
        _BroadcastComputedParams(devices, model_helper_obj, rendezvous, use_nccl)

    if len(model_helper_obj._grad_names) > 0:
        # Gradients in reverse order
        reverse_ordered_grads = _GetReverseOrderedGrads(model_helper_obj)
        assert(len(reverse_ordered_grads) > 0)
        _AllReduceBlobs(
            reverse_ordered_grads,
            devices,
            model_helper_obj,
            model_helper_obj.net,
            rendezvous,
            use_nccl,
            max_concurrent_distributed_ops,
        )
    else:
        log.info("NOTE: Param builder function did not create any parameters.")

    log.info("Post-iteration operators for updating params")
    num_shards = 1 if rendezvous is None else rendezvous['num_shards']

    all_params = set(model_helper_obj.GetParams(''))
    if shared_model:
        _PruneParametersForSharing(model_helper_obj)

    if param_update_builder_fun is not None:
        for device in devices:
            device_opt = core.DeviceOption(model_helper_obj._device_type, device)
            with core.DeviceScope(device_opt):
                with core.NameScope(
                    "{}_{}".format(model_helper_obj._device_prefix, device)
                ):
                    param_update_builder_fun(model_helper_obj)
    else:
        log.info("Calling optimizer builder function")
        optimizer = optimizer_builder_fun(model_helper_obj)
        model_helper_obj._optimizer = optimizer

    (sync_blobs, sync_names) = _ComputeBlobsToSync(model_helper_obj)
    sync_blobs_grouped = _GroupByDevice(
        model_helper_obj,
        devices,
        sync_blobs,
        [],
    )
    model_helper_obj._device_grouped_blobs.update(sync_blobs_grouped)

    _InferBlobDevice(model_helper_obj)
    _AnalyzeOperators(model_helper_obj)

    # Configure dagnet to run with only one worker on the first iteration,
    # to prevent concurrency problems with allocs and nccl.
    arg = model_helper_obj.Proto().arg.add()
    arg.name = "first_iter_only_one_worker"
    arg.i = 1

    # Add initial parameter syncs
    log.info("Add initial parameter sync")
    _SyncAllParams(
        devices,
        model_helper_obj,
        model_helper_obj.param_init_net,
        model_helper_obj.param_init_net,
        rendezvous,
        sync_names,
        max_concurrent_distributed_ops=1
    )

    # Handle any operations that need to be done after parameter sync
    # i.e. making sure multi-precision copies of parameters are up-to-date
    if post_sync_builder_fun is not None:
        for device in devices:
            device_opt = core.DeviceOption(model_helper_obj._device_type, device)
            with core.DeviceScope(device_opt):
                with core.NameScope(
                    "{}_{}".format(model_helper_obj._device_prefix, device)
                ):
                    post_sync_builder_fun(model_helper_obj)

    assert not (optimize_gradient_memory and dynamic_memory_management), \
        """It is not advised to use gradient optimization ('memonger')
        with dynamic memory management."""

    if optimize_gradient_memory:
        _OptimizeGradientMemorySimple(model_helper_obj, losses_by_gpu, devices)

    if dynamic_memory_management:
        _AddDynamicMemoryOptimization(model_helper_obj, blobs_to_keep, devices)


    model_helper_obj._data_parallel_model_init_nets = [
        model_helper_obj.param_init_net,
    ]

    model_helper_obj._data_parallel_model_nets = [
        model_helper_obj.net
    ]
    _AddBarrierToModelNets(model_helper_obj, barrier_net_timeout_sec)

    if shared_model:
        _RemapParameterBlobsForSharedModel(model_helper_obj, all_params)


def Parallelize_GPU_BMUF(*args, **kwargs):
    kwargs['cpu_device'] = False
    Parallelize_BMUF(*args, **kwargs)


def Parallelize_CPU_BMUF(*args, **kwargs):
    kwargs['cpu_device'] = True
    Parallelize_BMUF(*args, **kwargs)


def Parallelize_BMUF(
    model_helper_obj,
    input_builder_fun,
    forward_pass_builder_fun,
    param_update_builder_fun,
    block_learning_rate=1.0,
    block_momentum=None,
    devices=None,
    rendezvous=None,
    net_type='dag',
    master_device=None,
    use_nccl=False,
    nesterov=False,
    optimize_gradient_memory=False,
    reset_momentum_sgd=False,
    warmup_iterations=None,
    max_concurrent_distributed_ops=4,
    add_blobs_to_sync=None,
    num_threads_per_device=4,
    cpu_device=False,
    barrier_net_timeout_sec=_DEFAULT_BARRIER_NET_TIMEOUT_SEC,
):
    '''
    Function to create model that run on many GPUs and creates a net for
    parameter_updates that can be run independently for number of iterations
    then followed by another net that runs once to compute the final parameter
    updates according to block wise model update filtering rule described
    in : Scalable Training of Deep Learning Machines by Incremental Block
    Training with Intra-block Parallel Optimization and Blockwise Model-Update
    Filtering (ICASSP 2016).
    '''
    assert scope.CurrentDeviceScope() is None \
        or scope.CurrentDeviceScope().device_type == caffe2_pb2.CPU, \
        "Parallelize must be called without device-scope, \
        device scope was: {}".format(scope.CurrentDeviceScope())

    assert isinstance(model_helper_obj, model_helper.ModelHelper)

    if devices is None:
        devices = list(range(0, workspace.NumGpuDevices()))
    if master_device is None:
        master_device = devices[0]

    if not cpu_device:
        for gpu in devices:
            if gpu >= workspace.NumGpuDevices():
                log.warning("** Only {} GPUs available, GPUs {} requested".format(
                    workspace.NumGpuDevices(), devices))
                break
        model_helper_obj._device_type = workspace.GpuDeviceType
        model_helper_obj._device_prefix = "gpu"
    else:
        model_helper_obj._device_type = caffe2_pb2.CPU
        model_helper_obj._device_prefix = "cpu"

    model_helper_obj._devices = devices
    model_helper_obj._rendezvous = rendezvous
    model_helper_obj._sync_barrier_net = None
    model_helper_obj._broadcast_context = None
    model_helper_obj._shared_model = False
    master_dev_opt = core.DeviceOption(model_helper_obj._device_type, master_device)

    # question: rendezvous structure
    num_shards = rendezvous['num_shards'] if rendezvous else 1
    # num_devices is #devices across all machines
    num_devices = len(devices) * num_shards
    # num_workers is #threads to execute the DAG per shard
    num_workers = num_threads_per_device * len(devices)
    if rendezvous:
        num_workers += 8

    loss_scale = 1.0 / num_devices
    if block_momentum is None:
        block_momentum = 1.0 - 1.0 / num_devices

    max_concurrent_distributed_ops = min(
        max_concurrent_distributed_ops,
        num_workers - 1
    )

    model_helper_obj.net.Proto().num_workers = num_workers
    model_helper_obj.net.Proto().type = net_type

    # A net for initializing global model parameters. Its called once in the
    # same step as net parameters initialization.
    model_helper_obj._global_model_init_net = core.Net('global_model_init')
    model_helper_obj._global_model_init_net.Proto().type = net_type
    model_helper_obj._global_model_init_net.Proto().num_workers = \
        num_workers

    # A net for computing final parameter updates. Its will run once after
    # running net (local models updates) for `num_local_iterations` times.
    model_helper_obj._global_model_param_updates_net = core.Net('global_model')
    model_helper_obj._global_model_param_updates_net.Proto().type = net_type
    model_helper_obj._global_model_param_updates_net.Proto().num_workers = \
        num_workers

    def _v(param):
        return "{}_v".format(param)

    def _g(param):
        return "{}_g".format(param)

    def _v_prev(param):
        return "{}_prev".format(param)

    # Keep track of params that were in the model before: they are not
    # data parallel, so we need to handle them separately
    non_datapar_params = copy.copy(model_helper_obj.params)
    model_helper_obj._losses_by_gpu = {}

    def _InitializeModels(gpu_id):
        input_builder_fun(model_helper_obj)
        loss = forward_pass_builder_fun(model_helper_obj, loss_scale)
        model_helper_obj._losses_by_gpu[gpu_id] = loss
    _ForEachDevice(
        devices,
        _InitializeModels,
        device_type=model_helper_obj._device_type,
        device_prefix=model_helper_obj._device_prefix,
        scoped=True
    )
    _ValidateParams(model_helper_obj.params)

    model_helper_obj._device_grouped_blobs =\
        _GroupByDevice(model_helper_obj, devices,
                       model_helper_obj.params, non_datapar_params)

    model_helper_obj._param_names =\
        list(viewkeys(model_helper_obj._device_grouped_blobs))

    _AddGradientOperators(
        devices, model_helper_obj, model_helper_obj._losses_by_gpu
    )
    _ValidateParams(model_helper_obj.params)

    _InferBlobDevice(model_helper_obj)

    def _InitializeParamUpdate(gpu_id):
        param_update_builder_fun(model_helper_obj)
    _ForEachDevice(
        devices,
        _InitializeParamUpdate,
        device_type=model_helper_obj._device_type,
        device_prefix=model_helper_obj._device_prefix,
        scoped=True
    )

    model_parameter_names = list(
        viewkeys(model_helper_obj._device_grouped_blobs)
    )
    if warmup_iterations is not None:
        model_helper_obj._warmup_iterations = warmup_iterations
        # A net for broadcasting gpu-0 (master shard) parameters after
        # running net for `warmup_iterartions`.
        model_helper_obj._warmup_broadcast = core.Net('warmup-broadcast')
        model_helper_obj._warmup_broadcast.Proto().type = net_type
        model_helper_obj._warmup_broadcast.Proto().num_workers = \
           num_workers

        _SyncAllParams(
            devices,
            model_helper_obj,
            model_helper_obj.param_init_net,
            model_helper_obj._warmup_broadcast,
            rendezvous,
            model_parameter_names,
            max_concurrent_distributed_ops
        )
        for param_name in viewkeys(model_helper_obj._device_grouped_blobs):
            param = model_helper_obj._device_grouped_blobs[param_name][master_device]
            with core.DeviceScope(master_dev_opt):
                model_helper_obj._warmup_broadcast.Copy(param, _g(param))

    # (Step-0) Initialize momentum parameters on master device.
    for param_name in viewkeys(model_helper_obj._device_grouped_blobs):
        param = model_helper_obj._device_grouped_blobs[param_name][master_device]
        with core.DeviceScope(master_dev_opt):
            model_helper_obj._global_model_init_net.ConstantFill(
                param, _v(param), value=0.0
            )
            model_helper_obj._global_model_init_net.Copy(param, _g(param))
            if nesterov:
                model_helper_obj._global_model_init_net.ConstantFill(
                    param, _v_prev(param), value=0.0
                )

    # (Step-1) Update models for num_local_iterations.

    # (Step-2) Compute post-local-updates average of the params.
    # Sum model params across GPUs and store resutls in param_avg blob.
    _AllReduceBlobs(
        model_parameter_names,
        devices,
        model_helper_obj,
        model_helper_obj._global_model_param_updates_net,
        rendezvous,
        use_nccl,
        max_concurrent_distributed_ops
    )

    # (Step-3) Update momentum params :
    # param_v = block_momentum * param_v
    # + block_learning_Rate * (param_avg - param)
    # if nesterov momentum:
    # param = param + param_v
    # - block_momentum * (param_v - param_v_prev)
    # param_v_prev = param_v
    # else:
    # param = param + param_v
    for param_name in model_parameter_names:
        param = model_helper_obj._device_grouped_blobs[param_name][master_device]
        with core.DeviceScope(master_dev_opt):
            # TODO(ataei) : Stop building the graph here to get model average ?
            model_helper_obj._global_model_param_updates_net.Scale(
                param, param, scale=1.0 / num_devices
            )
            model_helper_obj._global_model_param_updates_net.Sub(
                [param, _g(param)], param
            )
            model_helper_obj._global_model_param_updates_net.Scale(
                param, param, scale=block_learning_rate
            )
            model_helper_obj._global_model_param_updates_net.Scale(
                _v(param), _v(param), scale=block_momentum
            )
            model_helper_obj._global_model_param_updates_net.Add(
                [_v(param), param], _v(param)
            )
            model_helper_obj._global_model_param_updates_net.Add(
                [_g(param), _v(param)], _g(param)
            )
            if nesterov:
                model_helper_obj._global_model_param_updates_net.Sub(
                    [_v(param), _v_prev(param)], _v_prev(param)
                )
                model_helper_obj._global_model_param_updates_net.Scale(
                    _v_prev(param), _v_prev(param), scale=block_momentum
                )
                model_helper_obj._global_model_param_updates_net.Sub(
                    [_g(param), _v_prev(param)], _g(param)
                )
                model_helper_obj._global_model_param_updates_net.Copy(
                    _v(param), _v_prev(param)
                )
            model_helper_obj._global_model_param_updates_net.Copy(
                _g(param), param
            )


    _SyncAllParams(
        devices,
        model_helper_obj,
        model_helper_obj.param_init_net,
        model_helper_obj._global_model_param_updates_net,
        rendezvous,
        model_parameter_names,
        max_concurrent_distributed_ops
    )

    # Add additional syncs
    if add_blobs_to_sync is not None:
        AddBlobSync(
            model_helper_obj,
            add_blobs_to_sync,
            net=model_helper_obj._global_model_param_updates_net)

    # Reset momentum-SGD parameters
    if reset_momentum_sgd:
        momentum_ops = [op for op in model_helper_obj.net.Proto().op
                        if op.type == 'MomentumSGDUpdate']
        for op in momentum_ops:
            momentum_blob = op.input[1]
            with core.DeviceScope(op.device_option):
                model_helper_obj._global_model_param_updates_net.ConstantFill(
                    [momentum_blob], momentum_blob, value=0.0
                )

    if optimize_gradient_memory:
        _OptimizeGradientMemorySimple(
            model_helper_obj, model_helper_obj._losses_by_gpu, devices
        )

    model_helper_obj._data_parallel_model_init_nets = [
        model_helper_obj.param_init_net,
        model_helper_obj._global_model_init_net
    ]

    model_helper_obj._data_parallel_model_nets = [
        model_helper_obj.net,
        (model_helper_obj._global_model_param_updates_net, 1)
    ]
    _AddBarrierToModelNets(model_helper_obj, barrier_net_timeout_sec)

def CreateNet(model, overwrite=False):
    for net_iters in model._data_parallel_model_nets:
        if isinstance(net_iters, tuple):
            workspace.CreateNet(net_iters[0], overwrite=overwrite)
        else:
            workspace.CreateNet(net_iters, overwrite=overwrite)


def RunInitNet(model):
    for init_net in model._data_parallel_model_init_nets:
        workspace.RunNetOnce(init_net)
    CreateNet(model)


def RunWarmup(model):
    workspace.RunNet(model.net, model._warmup_iterations)
    workspace.RunNetOnce(model._warmup_broadcast)


def RunNet(model, num_iterations):
    for net_iter in model._data_parallel_model_nets:
        if isinstance(net_iter, tuple):
            workspace.RunNet(net_iter[0].Proto().name, net_iter[1])
        else:
            workspace.RunNet(net_iter, num_iterations)


def _AddBarrierToModelNets(model, barrier_net_timeout_sec):
    if model._rendezvous is not None and model._rendezvous['engine'] == 'GLOO':
        # Synchronize DPM at the start of each epoch. This allows shards that
        # starts an epoch sooner to wait for slower shards.  Without this,
        # shards that are faster than others will begin training the next epoch
        # while stragglers are blocked on IO, and may timeout after 30 seconds
        # (_DEFAULT_TIMEOUT_SEC).
        # We pass in model.param_init_net so that the barrier net can be run as
        # part of the param_init_net.

        model._barrier_init_net = core.Net("barrier_init_net")

        model._barrier_net = _CreateBarrierNet(model, model._barrier_init_net,
        "pre_training", barrier_net_timeout_sec)

        model._data_parallel_model_init_nets.insert(0, model._barrier_init_net)

        model._data_parallel_model_nets.insert(0, model._barrier_net)


def _CreateBarrierNet(model, init_net, name_prefix, timeout_sec):
    log.info("Creating barrier net")
    assert model._rendezvous['engine'] == 'GLOO', "Engine does not support barrier"
    comm_world = _CreateOrCloneCommonWorld(
        init_net,
        name_prefix + "_barrier_cw",
        rendezvous=model._rendezvous,
        timeout_sec=timeout_sec,
    )
    barrier_net = core.Net(name_prefix + "_barrier_net")
    barrier_net.Barrier(
        inputs=[comm_world],
        outputs=[],
        engine=model._rendezvous['engine'],
    )
    return barrier_net


# DEPRECATED: See warnings below.
def Synchronize(model, timeout_sec=_DEFAULT_BARRIER_NET_TIMEOUT_SEC):
    warnings.warn("The Synchronize API has been deprecated.  We now have a "
            "barrier net which runs before training to ensure all hosts wait "
            "before training starts.  The default timeout for the barrier is "
            "300s and it can be overridden using the barrier_net_timeout_sec "
            "parameter when calling Parallelize.",
            category=DeprecationWarning, stacklevel=2)
    if model._rendezvous is None or model._rendezvous['num_shards'] <= 1:
        # Single host case
        return

    if model._sync_barrier_net is None:
        barrier_init_net = core.Net("sync_barrier_init_net")
        model._sync_barrier_net = _CreateBarrierNet(
            model, barrier_init_net, "sync", timeout_sec)
        workspace.RunNetOnce(barrier_init_net)
        workspace.CreateNet(model._sync_barrier_net)
        model._sync_barrier_net_timeout = timeout_sec
    assert model._sync_barrier_net_timeout == timeout_sec, \
        "Must use fixed timeout, {} != {}".format(
            model._sync_barrier_net_timeout, timeout_sec
        )
    log.info("Synchronize run barrier net.")
    workspace.RunNet(model._sync_barrier_net)


def ConvertNetForDevice(net, device=None):
    '''
    Converts all blobs in the net to have namescope gpu_X, and correct
    device scope. You can use this to enable AppendNet with a
    forward_pass_builder_fun:

       def builder_fun(model):
          ...
          model.net.AppendNet(
             data_parallel_model.ConvertNetForDevice(othermodel.net))
          model.param_init_net.AppendNet(
             data_parallel_model.ConvertNetForDevice(othermodel.param_init_net))
    '''
    mnet = copy.deepcopy(net)

    if device is None:
        device = scope.CurrentDeviceScope()
    if core.IsGPUDeviceType(device.device_type):
        device_prefix = "gpu"
    elif device.device_type == caffe2_pb2.IDEEP:
        device_prefix = "ideep"
    else:
        device_prefix = "cpu"

    namescope = "{}_{}/".format(device_prefix, device.device_id)
    for op in mnet.Proto().op:
        if "RecurrentNetwork" in op.type:
            raise NotImplementedError("RecurrentNetwork conversion not yet supported")
        for i, inputb in enumerate(op.input):
            op.input[i] = namescope + inputb
        for i, outputb in enumerate(op.output):
            op.output[i] = namescope + outputb
        for i, blob in enumerate(op.control_input):
            op.control_input[i] = namescope + blob
        op.device_option.CopyFrom(device)
    for i, einp in enumerate(mnet.Proto().external_input):
        mnet.Proto().external_input[i] = namescope + einp
    for i, eoutp in enumerate(mnet.Proto().external_output):
        mnet.Proto().external_output[i] = namescope + eoutp
    return mnet


def _ForEachDevice(devices, f, device_type, device_prefix, scoped=False,
                   *args, **kwargs):
    for device in devices:
        device_opt = core.DeviceOption(device_type, device)
        with core.DeviceScope(device_opt):
            if scoped:
                with core.NameScope("{}_{}".format(device_prefix, device)):
                    f(device, *args, **kwargs)
            else:
                f(device, *args, **kwargs)


def _AddGradientOperators(devices, model, losses_by_gpu):
    def create_grad(lossp):
        return model.ConstantFill(lossp, str(lossp) + "_grad", value=1.0)

    loss_grad = {}
    # Explicitly need to create gradients on each GPU
    for gpu_id in devices:
        device = core.DeviceOption(model._device_type, gpu_id)
        with core.DeviceScope(device):
            for l in losses_by_gpu[gpu_id]:
                lg = create_grad(l)
                loss_grad[str(l)] = str(lg)

    model.AddGradientOperators(loss_grad)


def ExtractPredictorNet(model, inputs, outputs, device):
    '''
    Returns (net, params) that can be exported to be used as a prediction
    net.
    '''
    master_device = model._devices[0]
    prefix = "{}_{}/".format(model._device_prefix, master_device)
    prefix_inputs = [prefix + str(b) for b in inputs]
    prefix_outputs = [prefix + str(b) for b in outputs]
    (predictor_net, export_blobs) = model_helper.ExtractPredictorNet(
        net_proto=model.net.Proto(),
        input_blobs=prefix_inputs,
        output_blobs=prefix_outputs,
        device=device,
        renames={
            a: b
            for (a, b) in zip(prefix_inputs + prefix_outputs, inputs + outputs)
        },
    )

    return (predictor_net, export_blobs)


def GetCheckpointParams(model):
    '''
    Returns a set of blobs that are needed for a complete check point.
    They are blobs for the first gpu and iteration blobs.
    '''
    (all_blobs, _) = _ComputeBlobsToSync(model)
    first_gpu_blobs = {
        b
        for b in all_blobs
        if str(b)
        .startswith("{}_{}/".format(model._device_prefix, model._devices[0]))
    }

    # Add iteration blobs that do not have namescope separately, since
    # it is important to checkpoint iteration counter
    iteration_blobs = set()
    for op in model.net.Proto().op:
        if op.type == 'Iter' or op.type == 'AtomicIter':
            if not op.output[0].startswith("{}_".format(model._device_prefix)):
                iteration_blobs.add(op.output[0])

    return first_gpu_blobs.union(iteration_blobs)


def FinalizeAfterCheckpoint(model, blobs=None, cpu_mode=False):
    '''
    This function should be called after loading parameters from a
    checkpoint / initial parameters file.
    '''

    if not hasattr(model, "_checkpoint_net"):
        if blobs is None:
            (_, uniq_blob_names) = _ComputeBlobsToSync(model)
        else:
            uniq_blob_names = [stripBlobName(p) for p in blobs]

        # Synchronize to the blob lookup map, as the provided
        # blobs might have non-parameters, such as momentum blobs.
        log.info("Creating checkpoint synchronization net")
        devices = model.GetDevices()
        for name in uniq_blob_names:
            if name not in model._device_grouped_blobs:
                grouped = {
                    d:
                    core.BlobReference("{}_{}{}{}".format(
                        model._device_prefix,
                        d,
                        scope._NAMESCOPE_SEPARATOR,
                        name)
                    ) for d in devices}
                model._device_grouped_blobs[name] = grouped

        model._checkpoint_net = core.Net("checkpoint_sync_net")
        if not cpu_mode:
            model._checkpoint_net.RunAllOnGPU()

        checkpoint_init_net = None
        if (model._rendezvous is not None and model._rendezvous['num_shards'] > 1):
            checkpoint_init_net = core.Net("checkpoint_init_net")
            if not cpu_mode:
                checkpoint_init_net.RunAllOnGPU()

        _SyncAllParams(
            devices,
            model,
            checkpoint_init_net,
            model._checkpoint_net,
            model._rendezvous,
            uniq_blob_names,
            max_concurrent_distributed_ops=1
        )
        if (checkpoint_init_net):
            workspace.RunNetOnce(checkpoint_init_net)

        workspace.CreateNet(model._checkpoint_net)

    # Run the sync
    log.info("Run checkpoint net")
    workspace.RunNet(model._checkpoint_net.Proto().name)


def GetLearningRateBlobNames(model):
    '''
    Returns a list of learning rates blob names used in the optimizer.
    '''
    if model._optimizer is not None:
        if model._device_type == caffe2_pb2.CPU or model._device_type == caffe2_pb2.IDEEP:
            return [model._optimizer.get_cpu_blob_name('lr')]
        elif core.IsGPUDeviceType(model._device_type):
            return [model._optimizer.get_gpu_blob_name('lr', gpu, '')
                    for gpu in model._devices]
        else:
            raise Exception(
                "Unsupported device type : {}".format(model._device_type)
            )
    else:
        lr_blob_names = []
        for op in model.net.Proto().op:
            if op.type == "LearningRate":
                lr_blob_names.append(op.output(0))
        return lr_blob_names


def _Broadcast(devices, model, net, param, use_nccl=False):
    # Copy params from gpu_0 to other
    master_dev = devices[0]

    if use_nccl:
        if _IsGPUBlob(model, param):
            master_device_opt = core.DeviceOption(model._device_type, master_dev)
            with core.DeviceScope(master_device_opt):
                # Note that the root is the root _rank_ and not the root
                # _device_. Thus we always use root=0, regardless of the
                # devices used.
                net.NCCLBroadcast(
                    list(viewvalues(model._device_grouped_blobs[param])),
                    list(viewvalues(model._device_grouped_blobs[param])),
                    root=0,
                )
                return

    for dev_idx in devices[1:]:
        if _IsGPUBlob(model, param):
            device_opt = core.DeviceOption(workspace.GpuDeviceType, dev_idx)
        else:
            device_opt = core.DeviceOption(caffe2_pb2.IDEEP, 0) if _IsIDEEPBlob(model, param) else \
                core.DeviceOption(caffe2_pb2.CPU, 0)
        with core.DeviceScope(device_opt):
            net.Copy(
                model._device_grouped_blobs[param][master_dev],
                model._device_grouped_blobs[param][dev_idx]
            )


def _AllReduce(devices, model, net, param, use_nccl=False, control_input=None):
    blobs_group = list(viewvalues(model._device_grouped_blobs[param]))
    if model._device_type == caffe2_pb2.CUDA and use_nccl:
        # TODO: for _shared_model, do only NCCLReduce
        model.NCCLAllreduce(
            blobs_group, blobs_group, control_input=control_input
        )
        return

    if model._device_type == workspace.GpuDeviceType:
        p2p_access_pattern = workspace.GetGpuPeerAccessPattern()
    else:
        p2p_access_pattern = None

    def sumN(*dev_indices):
        """Create a Sum op for 2 or more blobs on different devices.
        Saves the result on the first device.

        Args:
        dev_indices -- a list of device indices, which can be translated into
                       CUDA identifiers with model._devices
        """
        devices = [model._devices[idx] for idx in dev_indices]
        blobs = [blobs_group[idx] for idx in dev_indices]
        device_opt = core.DeviceOption(model._device_type, devices[0])
        with core.DeviceScope(device_opt):
            for i, peer in enumerate(devices):
                if i == 0:
                    continue  # Skip the first device
                if p2p_access_pattern is not None and p2p_access_pattern.size and not p2p_access_pattern[
                    devices[0], peer
                ]:
                    # Copy from peer to d0
                    blobs[i] = model.Copy(
                        blobs[i],
                        'gpu_{}/{}_gpu{}_copy'.format(devices[0], param, peer)
                    )
            net.Sum(blobs, [blobs[0]], name='dpm')

    if len(devices) == 16:
        # Special tree reduction for 16 gpus, TODO generalize like in muji.py
        for j in range(8):
            sumN(j * 2, j * 2 + 1)
        for j in range(4):
            sumN(j * 4, j * 4 + 2)
        for j in range(2):
            sumN(j * 8, j * 8 + 4)
        sumN(0, 8)
    elif len(devices) == 8:
        for j in range(4):
            sumN(j * 2, j * 2 + 1)
        for j in range(2):
            sumN(j * 4, j * 4 + 2)
        sumN(0, 4)
    elif len(devices) == 4:
        sumN(0, 1)
        sumN(2, 3)
        sumN(0, 2)
    else:
        sumN(*range(len(devices)))
    # TODO: for _shared_model, no need to broadcast
    _Broadcast(devices, model, net, param)


def _SyncAllParams(
    devices,
    model,
    init_net,
    net,
    rendezvous,
    unique_param_names,
    max_concurrent_distributed_ops=4
):
    if rendezvous is None or rendezvous['num_shards'] <= 1:
        _SyncAllParamsSingleHost(devices, model, net, unique_param_names)
    else:
        _SyncAllParamsDistributed(
            devices,
            model,
            init_net,
            net,
            rendezvous,
            unique_param_names,
            max_concurrent_distributed_ops
        )


def AddBlobSync(model, blobs, net=None):
    '''
    Sync a blob across devices and hosts
    '''
    if len(blobs) == 0:
        return
    net = model.net if net is None else net
    for b in blobs:
        assert not b.startswith(model._device_prefix), \
            "Provide unprefixed blob name: {}".format(b)
        model._device_grouped_blobs[b] = {
            d: core.BlobReference("{}_{}/{}".format(model._device_prefix, d, b))
            for d in model._devices
        }

    _SyncAllParams(
        model._devices,
        model,
        model.param_init_net,
        net,
        model._rendezvous,
        set(blobs))


def AddDistributedBlobSync(model, blobs):
    '''
    Sync blobs across machines (but not across devices)
    '''
    if model._rendezvous is None:
        return
    synth_name = "_".join([str(b) for b in blobs])
    comm_world = _CreateOrCloneCommonWorld(
        model.param_init_net,
        "blob_sync_cw_" + synth_name,
        rendezvous=model._rendezvous,
    )

    model.net.Allreduce(
        inputs=[comm_world] + blobs,
        outputs=blobs,
        engine=model._rendezvous['engine'],
    )


def _SyncAllParamsDistributed(
    devices,
    model,
    init_net,
    net,
    rendezvous,
    unique_param_names,
    max_concurrent_distributed_ops
):
    assert rendezvous['num_shards'] > 1

    gpu_device_opt = core.DeviceOption(model._device_type, devices[0])
    cpu_device_opt = core.DeviceOption(caffe2_pb2.CPU)
    ideep_device_opt = core.DeviceOption(caffe2_pb2.IDEEP)

    if model._broadcast_context is None:
        model._broadcast_context = CollectivesConcurrencyControl(
            "broadcast",
            max_concurrent_distributed_ops,
            init_net,
            rendezvous
        )
    context = model._broadcast_context

    for param_name in sorted(unique_param_names):
        master_param = model._device_grouped_blobs[param_name][devices[0]]
        params_group = list(viewvalues(model._device_grouped_blobs[param_name]))

        def broadcast(params):
            comm_world, control_input = context.get_control_and_context(params)
            net.Broadcast(
                inputs=[comm_world] + params,
                outputs=params,
                name=param_name,
                engine=rendezvous['engine'],
                control_input=control_input
            )

        device_opt = gpu_device_opt if _IsGPUBlob(
            model, param_name
        ) else ideep_device_opt if _IsIDEEPBlob(model, param_name) else cpu_device_opt

        if rendezvous['engine'] == 'GLOO':
            with core.DeviceScope(device_opt):
                broadcast(params_group)
        else:
            # Copy between GPU and CPU
            with core.DeviceScope(device_opt):
                param_cpu = net.CopyGPUToCPU(
                    master_param,
                    str(master_param) + "cpu"
                )
            with core.DeviceScope(cpu_device_opt):
                broadcast([param_cpu])
            with core.DeviceScope(device_opt):
                net.CopyCPUToGPU(param_cpu, master_param)

            # Broadcast locally
            _Broadcast(devices, model, net, param_name)


def _SyncAllParamsSingleHost(devices, model, net, unique_param_names):
    for param in unique_param_names:
        _Broadcast(devices, model, net, param)


def _AllReduceBlobs(blob_names, devices, model, net, rendezvous, use_nccl,
                    max_concurrent_distributed_ops):
    if rendezvous is None or rendezvous['num_shards'] <= 1:
        _AllReduceBlobsSingleHost(
            blob_names,
            devices,
            model,
            net,
            use_nccl
        )
    else:
        _AllReduceBlobsDistributed(
            blob_names,
            devices,
            model,
            net,
            rendezvous,
            max_concurrent_distributed_ops,
        )


def _PruneParametersForSharing(model):
    assert model._shared_model
    master_prefix = "{}_{}/".format(model._device_prefix, model._devices[0])

    # Remove non-master parameters so that they will not receive parameter
    # update operators.
    model.params = model.GetParams(master_prefix)
    paramset = set(model.params)

    model.param_to_grad = {
        p: model.param_to_grad[p]
        for p in model.param_to_grad if p in paramset
    }
    model.weights = [w for w in model.weights if w in paramset]
    model.biases = [w for w in model.biases if w in paramset]


def _RemapParameterBlobsForSharedModel(model, all_params):
    assert model._shared_model
    master_prefix = "{}_{}/".format(
        model._device_prefix, model._devices[0])
    log.info("Remapping param blobs to master -> {}".format(master_prefix))
    master_params = set(model.GetParams())

    # Remove all but master params
    def modify_ops(net):
        ops = []
        for op in net.Proto().op:
            delete_op = False
            # Delete ops that output non-master version of parameter
            for outp in op.output:
                if outp in all_params and outp not in master_params:
                    delete_op = True
                    log.debug("Delete b/c {}:  {}".format(outp, str(op)))
                    break
            if delete_op:
                continue
            # Remap inputs to point to the master param
            for j, inp in enumerate(op.input):
                if inp in all_params and inp not in master_params:
                    op.input[j] = master_prefix + stripBlobName(inp)
            ops.append(op)
        del net.Proto().op[:]
        net.Proto().op.extend(ops)

    modify_ops(model.param_init_net)
    modify_ops(model.net)


class CollectivesConcurrencyControl(object):
    """
    Creates common worlds (up to max_concurrent_context) and manage the
    sequential execution of collectives that shares the same context with
    cyclic control inputs.
    """
    def __init__(
        self,
        name,
        max_concurrent_context,
        param_init_net,
        rendezvous
    ):
        self.name = name
        self.param_init_net = param_init_net
        self.max_concurrent_context = max_concurrent_context
        self.counter = 0
        self.common_worlds = []
        self.control_inputs = []
        self.rendezvous = rendezvous

    def get_control_and_context(self, control_output_blob):
        common_world, control_input = [None, None]
        current_slot = self.counter % self.max_concurrent_context
        if len(self.common_worlds) < self.max_concurrent_context:
            common_world = _CreateOrCloneCommonWorld(
                self.param_init_net,
                "{}_{}_cw".format(self.name, current_slot),
                rendezvous=self.rendezvous,
            )
            self.common_worlds.append(common_world)
            self.control_inputs.append(control_output_blob)
        else:
            common_world = self.common_worlds[current_slot]
            control_input = self.control_inputs[current_slot]
            self.control_inputs[current_slot] = control_output_blob
        self.counter += 1
        return common_world, control_input


def _AllReduceBlobsDistributed(
    blob_names,
    devices,
    model,
    net,
    rendezvous,
    max_concurrent_distributed_ops,
):
    num_workers = model.net.Proto().num_workers
    assert num_workers > 1, "Please specify more than 1 worker"
    all_reduce_engine = rendezvous['engine']

    master_device_opt = core.DeviceOption(model._device_type, devices[0])

    reducing_device_opt = master_device_opt

    context = CollectivesConcurrencyControl(
        "allreduce",
        max_concurrent_distributed_ops,
        model.param_init_net,
        rendezvous
    )

    nccl_control_blob = None

    for blob_name in blob_names:
        master_blob = model._device_grouped_blobs[blob_name][devices[0]]
        blobs_group = list(viewvalues(model._device_grouped_blobs[blob_name]))

        assert master_blob in blobs_group

        # Remark: NCCLReduce does not support in-place modifications
        # so we need a temporary blob
        reduced_blob = str(master_blob) + "_red"

        def allreduce(blobs, **kwargs):
            with core.DeviceScope(reducing_device_opt):
                comm_world, control_input = \
                    context.get_control_and_context(blobs[0])
                net.Allreduce(
                    inputs=[comm_world] + blobs,
                    outputs=blobs,
                    name=blob_name,
                    engine=all_reduce_engine,
                    control_input=control_input,
                    **kwargs
                )

        if rendezvous['engine'] == 'GLOO':
            # With Gloo cross GPU and cross machine allreduce
            # can be executed in a single operation.
            # Try to use GPUDirect if transport == ibverbs.
            allreduce(
                blobs_group,
                gpu_direct=(rendezvous.get("transport", None) == "ibverbs"),
            )
        else:
            # Step 1: sum blobs from local GPUs to master GPU
            with core.DeviceScope(master_device_opt):
                model.ConstantFill(master_blob, reduced_blob, value=0.0)

                # Temp fix since NCCLReduce does not work
                net.NCCLAllreduce(
                    blobs_group,
                    blobs_group,
                    control_input=nccl_control_blob,
                )
                nccl_control_blob = blobs_group[0]
                net.Copy(master_blob, reduced_blob)

            # Step 2: allreduce between all hosts, between master GPUs
            allreduce([reduced_blob])

            with core.DeviceScope(master_device_opt):
                net.Copy(reduced_blob, master_blob)

            # Step 3: broadcast locally
            _Broadcast(devices, model, net, blob_name)


def _AllReduceBlobsSingleHost(blob_names, devices, model, net, use_nccl):
    """Performs NCCL AllReduce to distribute blobs to all the GPUs."""

    if len(devices) == 1:
        return

    # Now we need to Allreduce blobs on all the GPUs.
    # Pick GPU #0 as a master GPU.
    master_device_opt = core.DeviceOption(model._device_type, devices[0])
    last_out = None
    concatenated_idx = set()

    for blob_name in blob_names:
        # Group by blob_name for reduce.
        blobs_group = list(viewvalues(model._device_grouped_blobs[blob_name]))
        if len(blobs_group) == 1:
            # Non-reducible
            continue
        assert len(blobs_group) == len(devices), \
            "Each GPU from {}, should have a copy of {}.".format(
                devices, blob_name)

        if _IsGPUBlob(model, blob_name):
            with core.DeviceScope(master_device_opt):
                if not isinstance(blobs_group[0], core.GradientSlice):
                    _AllReduce(
                        devices, model, net, blob_name, use_nccl, last_out
                    )
                    # last_out is used to serialize the execution of nccls
                    last_out = blobs_group[0]

                else:
                    # Sparse gradients: all-gather for indices and values
                    master_ns = "{}_{}".format(model._device_prefix, devices[0])
                    '''
                    Skip if we have already copied concatenated indices
                    to the indices of GradientSlice. This happens when two
                    or more grad blobs are gathered with the same indices
                    blob
                    '''
                    skip_idx_concat = False
                    for g in blobs_group:
                        if g.indices in concatenated_idx:
                            skip_idx_concat = True

                    if not skip_idx_concat:
                        grad_idx_concat, _ = net.Concat(
                            [g.indices for g in blobs_group],
                            ["{}/{}_index_concat".format(master_ns, blob_name),
                             "{}/{}_index_splitinfo".format(master_ns, blob_name)],
                            axis=0,
                            name="note:data_parallel_model")

                        for gpu, g in viewitems(model._device_grouped_blobs[blob_name]):
                            device_opt = core.DeviceOption(model._device_type, gpu)
                            with core.DeviceScope(device_opt):
                                model.Copy(grad_idx_concat, g.indices)
                                concatenated_idx.add(g.indices)

                    grad_val_concat, _ = net.Concat(
                        [g.values for g in blobs_group],
                        ["{}/{}_val_concat".format(master_ns, blob_name),
                         "{}/{}_val_splitinfo".format(master_ns, blob_name)],
                        axis=0, name="note:data_parallel_model")

                    for gpu, g in viewitems(model._device_grouped_blobs[blob_name]):
                        device_opt = core.DeviceOption(model._device_type, gpu)
                        with core.DeviceScope(device_opt):
                            model.Copy(grad_val_concat, g.values)

        elif _IsIDEEPBlob(model, blob_name):
            assert not isinstance(blobs_group[0], core.GradientSlice), \
                "Synchronizing gradient slices not supported"
            with core.DeviceScope(core.DeviceOption(caffe2_pb2.IDEEP)):
                net.Sum(blobs_group, [blobs_group[0]])
                if not model._shared_model:
                    _Broadcast(devices, model, net, blob_name)

        else:
            assert not isinstance(blobs_group[0], core.GradientSlice), \
                "Synchronizing gradient slices not supported"
            with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
                # Poor man's allreduce
                net.Sum(blobs_group, [blobs_group[0]])
                if not model._shared_model:
                    _Broadcast(devices, model, net, blob_name)


def _BroadcastComputedParams(devices, model, rendezvous, use_nccl=False):
    if rendezvous is None:
        _BroadcastComputedParamsSingleHost(devices, model, use_nccl)
    else:
        _BroadcastComputedParamsDistributed(devices, model, rendezvous, use_nccl)


def _BroadcastComputedParamsDistributed(
    devices,
    model,
    rendezvous,
    use_nccl=False
):
    _BroadcastComputedParamsSingleHost(devices, model, use_nccl)
    log.warn("Distributed broadcast of computed params is not implemented yet")


def _BroadcastComputedParamsSingleHost(devices, model, use_nccl=False):
    '''
    Average computed params over all devices
    '''
    if len(devices) == 1:
        return

    for param_name in model._computed_param_names:
        # Copy from master to others -- averaging would be perhaps better,
        # but currently NCCLAllReduce is too prone to deadlock
        _Broadcast(devices, model, model.net, param_name, use_nccl)


def _GetReverseOrderedGrads(model):
    '''
    Returns the gradients in reverse order (namespace stripped),
    for the optimal synchronization order.
    '''
    return list(reversed(model._grad_names))


# A helper function to extract a parameter's name
def stripBlobName(param):
    # Format is "a/b/c/d" -> "b/c/d"
    if isinstance(param, core.GradientSlice):
        return stripBlobName(param.indices) + ":" + stripBlobName(param.values)
    else:
        name = str(param)
    return name[name.index(scope._NAMESCOPE_SEPARATOR) + 1:]


def _AnalyzeOperators(model):
    '''
    Look at all the operators and check that they do not cross device scopes
    '''
    for op in model.Proto().op:
        if "NCCL" in op.type or "Copy" in op.type or "Concat" in op.type:
            continue
        if "Sum" == op.type and op.name == "dpm":
            continue
        if "Allreduce" in op.type and "GLOO" in op.engine:
            continue

        op_dev = op.device_option
        op_gpu = op_dev.device_id

        # This avoids failing on operators that are only for CPU
        if not core.IsGPUDeviceType(op_dev.device_type):
            continue

        namescope = "{}_{}/".format(model._device_prefix, op_gpu)
        for inp in list(op.input) + list(op.output):
            if inp.startswith("{}_".format(model._device_prefix)
                             ) and not inp.startswith(namescope):
                raise Exception(
                    "Blob {} of op {}, should have namescope {}. Op: {}".format(
                        inp,
                        op.type,
                        "{}_{}/".format(model._device_prefix, op_gpu),
                        str(op),
                    )
                )


def _InferBlobDevice(model):
    '''
    Assign blob to device option based on the operator outputing it
    '''
    mapping = {}

    def map_ops(proto):
        for op in proto.op:
            device_option = op.device_option
            if op.type == "Iter":
                # Hack for Iters which have blob in CPU context
                device_option = caffe2_pb2.DeviceOption()
                device_option.device_type = caffe2_pb2.CPU
            for b in list(op.input) + list(op.output):
                if b not in mapping:
                    mapping[b] = device_option
            if op.type.startswith('RecurrentNetwork'):
                step_args = [a for a in op.arg if a.name.endswith("step_net")]
                for step_arg in step_args:
                    map_ops(step_arg.n)
    map_ops(model.param_init_net.Proto())
    map_ops(model.net.Proto())
    model._blob_to_device = mapping

def _IsIDEEPBlob(model, blob_name):
    if blob_name in model._blob_to_device:
        return model._blob_to_device[blob_name].device_type == caffe2_pb2.IDEEP
    else:
        blob_name = "{}_{}/{}".format(
            model._device_prefix, model._devices[0], blob_name
        )
        if blob_name not in model._blob_to_device:
            return model._device_type == caffe2_pb2.IDEEP
        return model._blob_to_device[blob_name].device_type == caffe2_pb2.IDEEP

def _IsGPUBlob(model, blob_name):
    if blob_name in model._blob_to_device:
        return core.IsGPUDeviceType(model._blob_to_device[blob_name].device_type)
    else:
        blob_name = "{}_{}/{}".format(
            model._device_prefix, model._devices[0], blob_name
        )
        if blob_name not in model._blob_to_device:
            return core.IsGPUDeviceType(model._device_type)
        return core.IsGPUDeviceType(model._blob_to_device[blob_name].device_type)


def _GroupByDevice(model, devices, params, non_data_params):
    '''
    Groups blobs by device, returning a map of [blobname] = {0: BlobRef, 1: ..}.
    Returns ordered dictionary, ensuring the original order.
    '''
    grouped = OrderedDict()
    # Only consider params that were created to be  "data parallel"
    params = params[len(non_data_params):]

    for _i, p in enumerate(params):
        assert isinstance(p, core.BlobReference) or \
            isinstance(p, core.GradientSlice), \
            "Param {} is not BlobReference or GradientSlice".format(p)

        name = stripBlobName(p)
        gpuid = None

        if isinstance(p, core.BlobReference):
            gpuid = int(p.GetNameScope().split("_")[1].split("/")[0])
            assert "{}_{}/".format(model._device_prefix, gpuid) in p.GetNameScope(),\
                "Param {} expected to have namescope '{}_{}'".format(str(p), model._device_prefix, gpuid)
        else:
            gpuid = int(p.indices.GetNameScope().split("_")[1].split("/")[0])
            assert "{}_{}/".format(model._device_prefix, gpuid) in p.indices.GetNameScope(),\
                "Indices {} expected to have namescope '{}_{}'".format(str(p), model._device_prefix, gpuid)
            assert "{}_{}/".format(model._device_prefix, gpuid) in p.values.GetNameScope(),\
                "Values {} expected to have namescope '{}_{}'".format(str(p), model._device_prefix, gpuid)

        if name not in grouped:
            grouped[name] = {}
        grouped[name][gpuid] = p

    return grouped


def _ValidateParams(params):
    set_params = set(params)
    if len(params) > len(set_params):
        dupes = []
        sp = sorted(params)
        for j, p in enumerate(sp):
            if j > 0 and sp[j - 1] == p:
                dupes.append(p)

        assert len(params) == len(set_params), \
            "Duplicate entries in params: {}".format(dupes)


def _ComputeBlobsToSync(model):
    '''
    We sync all blobs that are generated by param init net and
    are 'data parallel', i.e assigned to a device
    '''
    sync_names = set()

    # We don't sync params if the model is shared
    if model._shared_model:
        blobs_to_sync = [str(p) for p in model.GetComputedParams('')]
        sync_names = [stripBlobName(p) for p in blobs_to_sync]
    else:
        blobs_to_sync = []

        for op in model.param_init_net.Proto().op:
            dp_outputs = [
                o for o in op.output
                if o.startswith("{}_".format(model._device_prefix))
            ]
            sync_names.update([stripBlobName(o) for o in dp_outputs])
            blobs_to_sync.extend(dp_outputs)

        # Sanity check
        diff = set(model._param_names) - sync_names
        assert diff == set(), \
           "Some params not instantiated in param init net: {}".format(diff)

    # Remove duplicates and sort
    prefixlen = len(model._device_prefix) + 1

    def extract_sort_key(b):
        # Sort first based on device id, and then by whole string
        deviceid = int(b[prefixlen:b.index(scope._NAMESCOPE_SEPARATOR)])
        return (deviceid, b)

    blobs_to_sync = sorted(
        list(set(blobs_to_sync)),
        key=extract_sort_key)

    blobs_to_sync = [core.BlobReference(b) for b in blobs_to_sync]
    return (blobs_to_sync, sync_names)


def _OptimizeGradientMemorySimple(model, losses_by_gpu, devices):
    log.warning("------- DEPRECATED API, please use " +
                   "data_parallel_model.OptimizeGradientMemory() ----- ")
    for device in devices:
        namescope = "{}_{}/".format(model._device_prefix, device)
        model.net._net = memonger.share_grad_blobs(
            model.net,
            losses_by_gpu[device],
            set(viewvalues(model.param_to_grad)),
            namescope,
            share_activations=False,
        )


def _AddDynamicMemoryOptimization(model, blobs_to_keep, devices):
    blobs_to_keep_all_devices = set()
    if blobs_to_keep is not None:
        for device in devices:
            for blob_name in blobs_to_keep:
                blobs_to_keep_all_devices.add(
                    "{}_{}/{}".format(model._device_prefix, device, blob_name)
                )

    if model._rendezvous is not None:
        # GLOO operators expect the tensor addresses to remain same over
        # iterations so we need to remove param grads from the dynamic memory
        # management.
        blobs_to_keep_all_devices.update(
            [str(b) for b in viewvalues(model.param_to_grad)]
        )

    model.net._net = memonger.release_blobs_when_used(
        model.net.Proto(),
        blobs_to_keep_all_devices
    )


def OptimizeGradientMemory(model,
                           input_shapes,
                           excluded_blobs,
                           recycle_activations):
    """
    Optimize memory usage of the backward pass by recycling blobs for gradient
    inputs that have been 'used'.
    input_shapes:  dict of blob name to shape for the inputs of the model.
                   Pass empty dictionary if not known.
    excluded_blobs: list of blobs that cannot be recycled. These are blobs
                   that you will access externally.
    recycle_activations: whether to also recycle forward pass activations
    """
    if input_shapes is not None:
        input_shapes_all_devices = {}
        for b, shp in viewitems(input_shapes):
            for d in model._devices:
                input_shapes_all_devices["{}_{}/{}".
                                         format(model._device_prefix, d, b)] = shp

        (shapes, types) = workspace.InferShapesAndTypes(
            [model.param_init_net, model.net],
            input_shapes_all_devices,
        )
    else:
        shapes = None

    for device in model._devices:
        namescope = "{}_{}/".format(model._device_prefix, device)
        excluded_blobs_by_device = set(namescope + b for b in excluded_blobs)
        model.net._net = memonger.share_grad_blobs(
            model.net,
            model._losses_by_gpu[device],
            set(viewvalues(model.param_to_grad)),
            namescope,
            dont_share_blobs=excluded_blobs_by_device,
            share_activations=recycle_activations,
            blob_shapes=shapes,
        )


def _CreateOrCloneCommonWorld(
        net,
        common_world_blob,
        rendezvous,
        name=None,
        timeout_sec=None):

    if timeout_sec is None:
        timeout_sec = _DEFAULT_TIMEOUT_SEC

    timeout_ms = timeout_sec * 1000

    # Check if there is an existing CreateCommonWorld
    # with the same timeout we're looking for. If so,
    # we can clone it instead of creating a new one.
    existing = None
    for op in net.Proto().op:
        if op.type != "CreateCommonWorld":
            continue

        # Find common world timeout
        op_timeout_ms = -1
        for arg in op.arg:
            if arg.name == 'timeout_ms':
                op_timeout_ms = arg.i
                break
        if op_timeout_ms != timeout_ms:
            continue

        # This common world was created with the same timeout we're
        # looking for, so we can clone it
        existing = op.output[0]
        break

    if name is None:
        name = "{}_op".format(common_world_blob)

    if existing is not None:
        comm_world = net.CloneCommonWorld(
            [existing],
            common_world_blob,
            name=name,
            engine=rendezvous['engine'],
        )
    else:
        kwargs=dict()
        if 'transport' in rendezvous:
            kwargs['transport'] = rendezvous['transport']
        if 'interface' in rendezvous:
            kwargs['interface'] = rendezvous['interface']
        if 'mpi_rendezvous' in rendezvous:
            kwargs['mpi_rendezvous'] = rendezvous['mpi_rendezvous']
        comm_world = net.CreateCommonWorld(
            rendezvous['kv_handler'] or [],
            common_world_blob,
            name=name,
            size=rendezvous['num_shards'],
            rank=rendezvous['shard_id'],
            engine=rendezvous['engine'],
            timeout_ms=timeout_ms,
            **kwargs
        )

    return comm_world


def _RunComparison(model, blob_name, device=None):
    if device is None:
        device = model._blob_to_device[blob_name]
    with core.DeviceScope(device):
        rendezvous = model._rendezvous
        if rendezvous is None or rendezvous['num_shards'] == 1:
            return True

        test_data_arr = np.zeros(rendezvous['num_shards']).astype(np.float32)
        test_data_arr[rendezvous['shard_id']] = 1
        workspace.FeedBlob("compare_arr", test_data_arr)

        comparison_net = core.Net("allcompare_net")

        kwargs=dict()
        if 'mpi_rendezvous' in rendezvous:
            kwargs['mpi_rendezvous'] = rendezvous['mpi_rendezvous']
        comm_world = comparison_net.CreateCommonWorld(
            rendezvous['kv_handler'] or [],
            "initial_sync",
            name=model.net.Proto().name + ".cw_master_select",
            size=rendezvous['num_shards'],
            rank=rendezvous['shard_id'],
            engine=rendezvous['engine'],
            **kwargs
        )

        blob_name_checksum = blob_name + "_checksum"
        comparison_net.SumSqrElements(
            [blob_name], [blob_name_checksum], average=False
        )

        blob_name_gather = blob_name + "_gather"
        comparison_net.Mul(
            inputs=["compare_arr", blob_name_checksum],
            outputs=blob_name_gather,
            broadcast=1
        )

        comparison_net.Allreduce(
            inputs=[comm_world, blob_name_gather],
            outputs=[blob_name_gather],
            engine=rendezvous['engine'],
        )

        workspace.RunNetOnce(comparison_net)
        gather_arr = workspace.FetchBlob(blob_name_gather)

        baseline = gather_arr[0]
        for i in range(rendezvous['num_shards']):
            assert gather_arr[i] == baseline, \
                "allcompare failed on shard {}.".format(rendezvous['shard_id'])

        return True


def _InterleaveOps(model):
    '''
    Data Parallel Model creates a net with ops in one device grouped together.
    This will interleave the ops so that each op for each device is next
    to each other in the net. Kind of like combining decks of cards. This
    ensures that progress is made along the critical path roughly concurrently
    for each device, which is important due to the extra intra-node
    synchronization required for multi-device batch normalization.
    '''
    orig_ops = list(model.net.Proto().op)
    num_devices = len(model._devices)
    num_ops_per_dev = len(orig_ops) // num_devices
    assert num_devices * num_ops_per_dev == len(orig_ops), \
           'Number of ops per device in original net is not uniform'
    new_ops = []
    ops = {d: [] for d in range(num_devices)}
    for op in orig_ops:
        ops[op.device_option.device_id].append(op)

    for j in range(num_ops_per_dev):
        tp = None
        for d in model._devices:
            if tp is None:
                tp = ops[d][j].type
            new_ops.append(ops[d][j])
            # Sanity
            assert ops[d][j].type == tp, \
                "Type mismatch {} / {}".format(tp, ops[d][j].type)

    del model.net.Proto().op[:]
    model.net.Proto().op.extend(new_ops)


def _CPUInterDeviceBatchNormalization(model):
    orig_ops = list(model.net.Proto().op)
    new_ops = []
    num_devices = len(model._devices)
    batch_norm_ops = []
    injected_ops = []

    spatial_bn_phase = False
    sums_blobs = []
    sumsq_blobs = []
    name = []
    input_blob_name = None

    spatial_bn_gradient_phase = False
    scale_grad_blobs = []
    bias_grad_blobs = []

    def _cpuReduce(param, input_blobs, destination_blobs):
        """
        Reduce results from multiple cpus and distributes the results back
        to each device. This is done by copying values to cpu_0 and summing
        them. The cpu_0 result is then copied back to each of the devices.

        param: the name of the data (blobs) to reduce
        input_blobs: the list of blobs to reduce
        destination_blobs: list of blobs to copy the result to
        """
        added_ops = []
        result_blob = "cpu_0/" + param + "_combined"
        added_ops.append(core.CreateOperator("Sum", input_blobs, result_blob))
        for blob in destination_blobs:
            added_ops.append(core.CreateOperator("Copy", result_blob, blob))
        return added_ops

    for op in orig_ops:
        if op.type != 'SpatialBN' and op.type != 'SpatialBNGradient':
            if spatial_bn_phase:
                new_ops.extend(injected_ops)
                new_ops.append(
                    core.CreateOperator("Sum",
                                        sums_blobs,
                                        input_blob_name + "_sums_combined"))
                new_ops.append(
                    core.CreateOperator("Sum",
                                        sumsq_blobs,
                                        input_blob_name + "_sumsq_combined"))
                new_ops.extend(batch_norm_ops)
                injected_ops = []
                batch_norm_ops = []
                sums_blobs = []
                sumsq_blobs = []
                spatial_bn_phase = False
                input_blob_name = None
            elif spatial_bn_gradient_phase:
                new_ops.extend(injected_ops)
                new_ops.extend(_cpuReduce(
                    stripBlobName(scale_grad_blobs[0]),
                    scale_grad_blobs,
                    scale_grad_blobs))
                new_ops.extend(_cpuReduce(
                    stripBlobName(bias_grad_blobs[0]),
                    bias_grad_blobs,
                    bias_grad_blobs))
                new_ops.extend(batch_norm_ops)
                injected_ops = []
                batch_norm_ops = []
                scale_grad_blobs = []
                bias_grad_blobs = []
                spatial_bn_gradient_phase = False
            new_ops.append(op)
        elif op.type == 'SpatialBN':
            spatial_bn_phase = True
            if input_blob_name is None:
                input_blob_name = op.input[0]
            name = op.input[0]
            injected_ops.append(
                core.CreateOperator(
                    "ChannelStats",
                    name,
                    [name + "_sums", name + "_sumsq"]))
            sums_blobs.append(name + "_sums")
            sumsq_blobs.append(name + "_sumsq")
            op.input.append(input_blob_name + "_sums_combined")
            op.input.append(input_blob_name + "_sumsq_combined")
            op.arg.extend([utils.MakeArgument("num_batches", num_devices)])
            batch_norm_ops.append(op)
        elif op.type == 'SpatialBNGradient':
            spatial_bn_gradient_phase = True
            injected_ops.append(
                core.CreateOperator("ChannelBackpropStats",
                                    [op.input[0], op.input[3], op.input[4],
                                     op.input[2]],
                                    [op.output[1], op.output[2]]))
            scale_grad_blobs.append(op.output[1])
            bias_grad_blobs.append(op.output[2])
            op.arg.extend([utils.MakeArgument("num_batches", num_devices)])
            op.input.extend([op.output[1], op.output[2]])
            batch_norm_ops.append(op)

    assert not spatial_bn_phase, \
        "Net modification for cpu inter-device batch normalization failed"
    del model.net.Proto().op[:]
    model.net.Proto().op.extend(new_ops)


def _GPUInterDeviceBatchNormalization(model):
    orig_ops = list(model.net.Proto().op)
    new_ops = []
    num_devices = len(model._devices)
    batch_norm_ops = []
    injected_ops = []

    spatial_bn_phase = False
    sums_blobs = []
    sumsq_blobs = []
    name = []
    input_blob_name = None

    spatial_bn_gradient_phase = False
    scale_grad_blobs = []
    bias_grad_blobs = []
    master_device = "cpu_0"
    master_device_option = core.DeviceOption(caffe2_pb2.CPU)

    def _gpuReduce(param, num_devices, master_device, result_blobs=None):
        """
        Reduces results from multiple gpus and distributes the results back
        to each device. This is done by copying values to the master device
        and summing them. The master device result is then copied back to
        each of the devices.

        param: the name of the data (blobs) to reduce
        num_devices: the number of devices
        master_device: the device to copy/compute values on
        result_blobs: optional list of result blobs to copy to
        """
        added_ops = []
        source_blobs = []
        destination_blobs = []
        if result_blobs is None:
            result_blobs = [
                "gpu_{}/{}_combined".format(i, param) for i in range(num_devices)
            ]
        for i in range(num_devices):
            device_option = core.DeviceOption(model._device_type, i)
            source_blobs.append("gpu_{}/{}".format(i, param))
            destination_blobs.append(
                "{}/{}_gpu_{}_copy".format(master_device, param, i))
            added_ops.append(
                core.CreateOperator(
                    "CopyGPUToCPU",
                    source_blobs[i],
                    destination_blobs[i],
                    device_option=device_option))
        added_ops.append(
            core.CreateOperator(
                "Sum",
                destination_blobs,
                "{}/{}_combined".format(master_device, param),
                device_option=master_device_option))
        for i in range(num_devices):
            device_option = core.DeviceOption(model._device_type, i)
            added_ops.append(
                core.CreateOperator(
                    "CopyCPUToGPU",
                    "{}/{}_combined".format(master_device, param),
                    result_blobs[i],
                    device_option=device_option))
        return added_ops

    for op in orig_ops:
        if op.type != 'SpatialBN' and op.type != 'SpatialBNGradient':
            if spatial_bn_phase:
                new_ops.extend(injected_ops)
                new_ops.extend(_gpuReduce(
                    stripBlobName(input_blob_name) + "_sums",
                    num_devices,
                    master_device,
                ))
                new_ops.extend(_gpuReduce(
                    stripBlobName(input_blob_name) + "_sumsq",
                    num_devices,
                    master_device,
                ))
                new_ops.extend(batch_norm_ops)
                injected_ops = []
                batch_norm_ops = []
                sums_blobs = []
                sumsq_blobs = []
                spatial_bn_phase = False
                input_blob_name = None
            elif spatial_bn_gradient_phase:
                new_ops.extend(injected_ops)
                new_ops.extend(_gpuReduce(
                    stripBlobName(scale_grad_blobs[0]),
                    num_devices,
                    master_device,
                    scale_grad_blobs,
                ))
                new_ops.extend(_gpuReduce(
                    stripBlobName(bias_grad_blobs[0]),
                    num_devices,
                    master_device,
                    bias_grad_blobs,
                ))
                new_ops.extend(batch_norm_ops)
                injected_ops = []
                batch_norm_ops = []
                scale_grad_blobs = []
                bias_grad_blobs = []
                spatial_bn_gradient_phase = False
            new_ops.append(op)
        elif op.type == 'SpatialBN':
            spatial_bn_phase = True
            if input_blob_name is None:
                input_blob_name = op.input[0]
            name = op.input[0]
            device_option = core.DeviceOption(
                model._device_type,
                op.device_option.device_id,
            )
            injected_ops.append(
                core.CreateOperator(
                    "ChannelStats",
                    name,
                    [name + "_sums", name + "_sumsq"],
                    device_option=device_option))
            sums_blobs.append(name + "_sums")
            sumsq_blobs.append(name + "_sumsq")
            op.input.append(name + "_sums_combined")
            op.input.append(name + "_sumsq_combined")
            op.arg.extend([utils.MakeArgument("num_batches", num_devices)])
            batch_norm_ops.append(op)
        elif op.type == 'SpatialBNGradient':
            spatial_bn_gradient_phase = True
            device_option = core.DeviceOption(
                model._device_type,
                op.device_option.device_id,
            )
            injected_ops.append(
                core.CreateOperator("ChannelBackpropStats",
                                    [op.input[0], op.input[3], op.input[4],
                                     op.input[2]],
                                    [op.output[1], op.output[2]],
                                    device_option=device_option))
            scale_grad_blobs.append(op.output[1])
            bias_grad_blobs.append(op.output[2])
            op.arg.extend([utils.MakeArgument("num_batches", num_devices)])
            op.input.extend([op.output[1], op.output[2]])
            batch_norm_ops.append(op)

    assert not spatial_bn_phase, \
        "Net modification for gpu inter-device batch normalization failed"
    del model.net.Proto().op[:]
    model.net.Proto().op.extend(new_ops)