1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
|
## @package data_workers
# Module caffe2.python.data_workers
'''
This module provides a python-land multithreaded data input mechanism
for Caffe2 nets.
Basic usage is as follows:
coordinator = data_workers.init_data_input_workers(
net,
["data", "label"],
my_fetch_fun,
batch_size=32,
input_source_name="train",
dont_rebatch=False
)
...
coordinator.start()
First argument is the Caffe2 net (or model helper), and second argument
is list of input blobs that are to be fed.
Argument 'input_source_name' is used to distinguish different sources of data,
such as train or test data. This is to ensure the data does not get mixed up,
although two nets would share blobs.
To do the actual data loading, one defines a "fetcher function"
that has call signature
my_fetch_fun(worker_id, batch_size)
Optionally, one can define a "init function" that is called once before
threads start, and has call signature:
my_init_fun(data_coordinator, global_coordinator)
If dont_rebatch is set to True, the data input is not batched into equal sized
chunks but data directly provided by fetchers is used.
'batch_columns' can be used to specify which dimension is the batch dimension,
for each of the inputs. Default is 0 for all iputs.
'timeout' is the timeout in seconds after which if no data is available, the
net will fail (default 600s = 10 mins).
This function returns a list of numpy arrays corresponding to the different
input blobs. In the example above, it would return two arrays, one for the
data blob and another for the labels. These arrays can have arbitrary number
of elements (i.e they do not need to match the batch size). The batch size
is provided for the function as a hint only.
For example, fetcher function could download images from a remote service or
load random images from a directory on a file system.
For a dummy example, see the data_workers_test unit test.
Note that for data_parallel_models, init_data_input_workers will be called
for each GPU. Note that the 'coordinator' returned by the function is same
each time.
'''
import queue as Queue
from itertools import chain
import logging
import threading
import numpy as np
import time
from caffe2.python import workspace, core, scope, utils
from caffe2.proto import caffe2_pb2
from caffe2.python.parallel_workers import Metrics, State, \
WorkerCoordinator, GlobalWorkerCoordinator, Worker, run_worker
log = logging.getLogger("data_workers")
log.setLevel(logging.INFO)
LOG_INT_SECS = 60
def get_worker_ids(num_workers):
return list(range(0, num_workers))
def init_data_input_workers(
net,
input_blob_names,
fetch_fun,
batch_size,
num_worker_threads=2,
input_source_name="train",
max_buffered_batches=800,
init_fun=None,
external_loggers=None,
dont_rebatch=False,
batch_columns=None,
timeout=600
):
global global_coordinator
device_option = scope.CurrentDeviceScope()
if (device_option is None):
device_option = caffe2_pb2.DeviceOption(device_type=caffe2_pb2.CPU)
metrics = Metrics(external_loggers)
batch_feeder = BatchFeeder(
net,
input_blob_names,
batch_size,
device_option,
scope.CurrentNameScope(),
input_source_name,
global_coordinator.get_queue(input_source_name, max_buffered_batches),
metrics,
dont_rebatch,
batch_columns,
timeout=timeout
)
# Launch fetch worker threads
worker_ids = [
global_coordinator.get_new_worker_id()
for i in range(num_worker_threads)
]
# Create coordinator object
coordinator = WorkerCoordinator(
input_source_name, worker_ids, init_fun, batch_feeder)
workers = [
threading.Thread(
target=run_worker,
name="data_workers fetcher id {}".format(worker_id),
args=[coordinator,
DataWorker(coordinator, worker_id, fetch_fun, metrics,
batch_size, batch_feeder)],
) for worker_id in worker_ids
]
workers.append(threading.Thread(
target=enqueuer,
name="Enqueuer {} {}".format(input_source_name, scope.CurrentNameScope()),
args=[coordinator, batch_feeder]))
coordinator._workers = workers
global_coordinator.add(coordinator)
return global_coordinator
class BatchFeeder(State):
def __init__(self, net, input_blob_names, batch_size,
device_option, namescope, input_source_name, queue,
metrics, dont_rebatch, batch_columns, timeout=600):
self._counter = 0
self._input_blob_names = input_blob_names
self._batch_size = batch_size
self._internal_queue = queue
self._queues = []
self._device_option = device_option
self._namescope = namescope
self._timeout = timeout
self._input_source_name = input_source_name
self._c2_queue_capacity = 4
self._create_caffe2_queues(net)
self._create_caffe2_ops(net)
self._inputs = 0
self._prev_seconds = 0
self._last_warning = time.time()
self._dont_rebatch = dont_rebatch
self._init_scratch()
self._metrics = metrics
if batch_columns is None:
batch_columns = [0 for _ in input_blob_names]
self._batch_columns = batch_columns
def start(self):
self._inputs = 0
self._prev_seconds = time.time()
def stop(self):
try:
for q in self._queues:
workspace.RunOperatorOnce(
core.CreateOperator("CloseBlobsQueue", [q], [])
)
finally:
self._log_inputs_per_interval(0, force=True)
def cleanup(self):
utils.ResetBlobs(self._scratch_blob.values())
utils.ResetBlobs(self._scratch_status.values())
def _get(self, data_input_coordinator):
start_time = time.time()
last_warning = time.time()
while data_input_coordinator.is_active():
try:
return self._internal_queue.get(block=True, timeout=0.5)
except Queue.Empty:
if time.time() - last_warning > 10.0:
log.warning("** Data input is slow: (still) no data in {} secs.".format(
time.time() - start_time))
last_warning = time.time()
continue
return None
def _validate_chunk(self, chunk):
if chunk is None:
log.warning("Fetcher function returned None")
return False
assert len(chunk) == len(self._input_blob_names), \
"Expecting data blob for each input"
for d in chunk:
assert isinstance(d, np.ndarray), \
"Fetcher function must return a numpy array"
if not self._dont_rebatch:
j = 1
for d in chunk[1:]:
assert d.shape[self._batch_columns[j]] == \
chunk[0].shape[self._batch_columns[0]], \
"Each returned input must have equal number of samples"
j += 1
if len(chunk) == 0:
log.warning("Worker provided zero length input")
return False
return True
def put(self, chunk, data_input_coordinator):
if not self._validate_chunk(chunk):
return
while data_input_coordinator.is_active():
try:
qsize = self._internal_queue.qsize()
if qsize < 2 and (time.time() - self._last_warning) > LOG_INT_SECS:
log.warning("Warning, data loading lagging behind: " +
"queue size={}, name={}".format(qsize, self._input_source_name))
self._last_warning = time.time()
self._counter += 1
self._internal_queue.put(chunk, block=True, timeout=0.5)
self._log_inputs_per_interval(chunk[0].shape[0])
return
except Queue.Full:
log.debug("Queue full: stalling fetchers...")
continue
def _enqueue_batch_direct(self, data_input_coordinator):
data = self._get(data_input_coordinator)
if data is None:
return
if data_input_coordinator.is_active():
for b, q, c in zip(self._input_blob_names, self._queues, data):
self._enqueue(b, q, c)
def _enqueue_batch(self, data_input_coordinator):
'''
This pulls data from the python-side queue and collects them
into batch-sized pieces, unless dont_rebatch is set to true.
'''
if self._dont_rebatch:
self._enqueue_batch_direct(data_input_coordinator)
return
cur_batch = [np.array([]) for d in self._input_blob_names]
first_batch_col = self._batch_columns[0]
# Collect data until we have a full batch size
while (
cur_batch[0].shape[0] == 0 or
cur_batch[0].shape[first_batch_col] < self._batch_size
) and data_input_coordinator.is_active():
chunk = self._get(data_input_coordinator)
if chunk is None:
continue
for j, chunk_elem in enumerate(chunk):
if cur_batch[j].shape[0] == 0:
cur_batch[j] = chunk_elem.copy()
else:
cur_batch[j] = np.append(
cur_batch[j], chunk_elem, axis=self._batch_columns[j]
)
start_time = time.time()
try:
# Return data over the batch size back to queue
if cur_batch[0].shape[0] > 0 and cur_batch[0].shape[
first_batch_col
] > self._batch_size:
leftover = []
trimmed_batch = []
for j, b in enumerate(cur_batch):
[c, l] = np.split(
b, [self._batch_size], axis=self._batch_columns[j]
)
leftover.append(l)
trimmed_batch.append(c)
cur_batch = trimmed_batch
try:
self._internal_queue.put(leftover, block=False)
except Queue.Full:
pass
assert cur_batch[0].shape[first_batch_col] == self._batch_size
if data_input_coordinator.is_active():
for b, q, c in zip(
self._input_blob_names, self._queues, cur_batch
):
self._enqueue(b, q, c)
finally:
self._metrics.put_metric('enqueue_time', time.time() - start_time)
def _init_scratch(self):
self._scratch_blob = {}
self._scratch_status = {}
for blob_name in self._input_blob_names:
scratch_name = self._namescope + blob_name + \
"_scratch_" + self._input_source_name
self._scratch_blob[blob_name] = core.BlobReference(scratch_name)
self._scratch_status[blob_name] = core.BlobReference(
scratch_name + "_status"
)
# Feed empty arrays to the scratch blobs here, so that there won't be
# race conditions when calling FeedBlob (which calls wworkspace
# CreateBlob()) from enqueue threads
for b in chain(
self._scratch_blob.values(), self._scratch_status.values()
):
workspace.FeedBlob(
b,
np.array([]).astype(np.float32),
device_option=self._device_option,
)
def _enqueue(self, blob_name, queue, data_arr):
'''
Enqueue the correctly sized batch arrays to Caffe2's queue.
'''
workspace.FeedBlob(
self._scratch_blob[blob_name],
data_arr,
device_option=self._device_option
)
op = core.CreateOperator(
"SafeEnqueueBlobs",
[queue, self._scratch_blob[blob_name]],
[self._scratch_blob[blob_name], self._scratch_status[blob_name]],
device_option=self._device_option
)
workspace.RunOperatorOnce(op)
def _create_caffe2_queues(self, net):
'''
Creates queues on caffe2 side
'''
def create_queue(queue_name, num_blobs, capacity):
workspace.RunOperatorOnce(
core.CreateOperator(
"CreateBlobsQueue",
[], [queue_name],
num_blobs=1,
capacity=capacity))
return core.ScopedBlobReference(queue_name)
for blob_name in self._input_blob_names:
qname = blob_name + "_c2queue" + "_" + self._input_source_name
q = create_queue(
qname, num_blobs=1, capacity=self._c2_queue_capacity
)
self._queues.append(q)
def _create_caffe2_ops(self, net):
'''
Creates dequeue-ops on caffe2 side
'''
for q, blob_name in zip(self._queues, self._input_blob_names):
# Add operator to the Caffe2 network to dequeue
net.DequeueBlobs(q, blob_name, timeout_secs=float(self._timeout))
def _log_inputs_per_interval(self, inputs, force=False):
self._inputs += inputs
current_seconds = time.time()
delta_seconds = current_seconds - self._prev_seconds
if delta_seconds >= LOG_INT_SECS or force:
inputs_per_sec = int(self._inputs / delta_seconds)
qsize = self._internal_queue.qsize()
log.info("{}/{}: {} inputs/sec".format(
self._input_source_name,
self._namescope,
inputs_per_sec,
))
log.info("-- queue: {} batches".format(qsize))
# log and reset perf metrics
self._metrics.put_metric(
'inputs_per_sec', inputs_per_sec, False)
self._metrics.put_metric('queue_size', qsize, False)
self._metrics.put_metric(
'time_elapsed', delta_seconds, False)
self._metrics.log_metrics()
self._metrics.reset_metrics()
self._inputs = 0
self._prev_seconds = current_seconds
class GlobalCoordinator(GlobalWorkerCoordinator):
def __init__(self):
GlobalWorkerCoordinator.__init__(self)
self._queues = {}
def get_queue(self, queue_name, max_buffered_batches):
assert isinstance(max_buffered_batches, int)
if queue_name not in self._queues:
self._queues[queue_name] = Queue.Queue(maxsize=max_buffered_batches)
return self._queues[queue_name]
def reset_data_input(self, namescope, name, net, batch_size):
log.info("Reset data input {}, batch size {}: ".format(name, batch_size))
for c in self._coordinators:
if c._worker_name == name and c._state._namescope == namescope:
c._state._batch_size = batch_size
c._state._create_caffe2_ops(net)
class DataWorker(Worker):
def __init__(
self,
coordinator,
worker_id,
worker_fun,
metrics,
batch_size,
batch_feeder
):
Worker.__init__(self, coordinator, worker_id, worker_fun=worker_fun,
metrics=metrics)
self._batch_size = batch_size
self._batch_feeder = batch_feeder
def run(self):
input_data = self._worker_fun(self._worker_id, self._batch_size)
self._batch_feeder.put(input_data, self._coordinator)
def finish(self):
self._metrics.put_metric(
'fetcher_time', time.time() - self._start_time)
global_coordinator = GlobalCoordinator()
def enqueuer(coordinator, batch_feeder):
while coordinator.is_active():
batch_feeder._enqueue_batch(coordinator)
|