File: data_workers_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (196 lines) | stat: -rw-r--r-- 6,561 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196





import numpy as np
import unittest
import time

from caffe2.python import workspace, model_helper
from caffe2.python import timeout_guard
import caffe2.python.data_workers as data_workers


def dummy_fetcher(fetcher_id, batch_size):
    # Create random amount of values
    n = np.random.randint(64) + 1
    data = np.zeros((n, 3))
    labels = []
    for j in range(n):
        data[j, :] *= (j + fetcher_id)
        labels.append(data[j, 0])

    return [np.array(data), np.array(labels)]


def dummy_fetcher_rnn(fetcher_id, batch_size):
    # Hardcoding some input blobs
    T = 20
    N = batch_size
    D = 33
    data = np.random.rand(T, N, D)
    label = np.random.randint(N, size=(T, N))
    seq_lengths = np.random.randint(N, size=(N))
    return [data, label, seq_lengths]


class DataWorkersTest(unittest.TestCase):

    def testNonParallelModel(self):
        workspace.ResetWorkspace()

        model = model_helper.ModelHelper(name="test")
        old_seq_id = data_workers.global_coordinator._fetcher_id_seq
        coordinator = data_workers.init_data_input_workers(
            model,
            ["data", "label"],
            dummy_fetcher,
            32,
            2,
            input_source_name="unittest"
        )
        new_seq_id = data_workers.global_coordinator._fetcher_id_seq
        self.assertEqual(new_seq_id, old_seq_id + 2)

        coordinator.start()

        workspace.RunNetOnce(model.param_init_net)
        workspace.CreateNet(model.net)

        for _i in range(500):
            with timeout_guard.CompleteInTimeOrDie(5):
                workspace.RunNet(model.net.Proto().name)

            data = workspace.FetchBlob("data")
            labels = workspace.FetchBlob("label")

            self.assertEqual(data.shape[0], labels.shape[0])
            self.assertEqual(data.shape[0], 32)

            for j in range(32):
                self.assertEqual(labels[j], data[j, 0])
                self.assertEqual(labels[j], data[j, 1])
                self.assertEqual(labels[j], data[j, 2])

        coordinator.stop_coordinator("unittest")
        self.assertEqual(coordinator._coordinators, [])

    def testRNNInput(self):
        workspace.ResetWorkspace()
        model = model_helper.ModelHelper(name="rnn_test")
        old_seq_id = data_workers.global_coordinator._fetcher_id_seq
        coordinator = data_workers.init_data_input_workers(
            model,
            ["data1", "label1", "seq_lengths1"],
            dummy_fetcher_rnn,
            32,
            2,
            dont_rebatch=False,
            batch_columns=[1, 1, 0],
        )
        new_seq_id = data_workers.global_coordinator._fetcher_id_seq
        self.assertEqual(new_seq_id, old_seq_id + 2)

        coordinator.start()

        workspace.RunNetOnce(model.param_init_net)
        workspace.CreateNet(model.net)

        while coordinator._coordinators[0]._state._inputs < 100:
            time.sleep(0.01)

        # Run a couple of rounds
        workspace.RunNet(model.net.Proto().name)
        workspace.RunNet(model.net.Proto().name)

        # Wait for the enqueue thread to get blocked
        time.sleep(0.2)

        # We don't dequeue on caffe2 side (as we don't run the net)
        # so the enqueue thread should be blocked.
        # Let's now shutdown and see it succeeds.
        self.assertTrue(coordinator.stop())

    @unittest.skip("Test is flaky: https://github.com/pytorch/pytorch/issues/9064")
    def testInputOrder(self):
        #
        # Create two models (train and validation) with same input blobs
        # names and ensure that both will get the data in correct order
        #
        workspace.ResetWorkspace()
        self.counters = {0: 0, 1: 1}

        def dummy_fetcher_rnn_ordered1(fetcher_id, batch_size):
            # Hardcoding some input blobs
            T = 20
            N = batch_size
            D = 33
            data = np.zeros((T, N, D))
            data[0][0][0] = self.counters[fetcher_id]
            label = np.random.randint(N, size=(T, N))
            label[0][0] = self.counters[fetcher_id]
            seq_lengths = np.random.randint(N, size=(N))
            seq_lengths[0] = self.counters[fetcher_id]
            self.counters[fetcher_id] += 1
            return [data, label, seq_lengths]

        workspace.ResetWorkspace()
        model = model_helper.ModelHelper(name="rnn_test_order")

        coordinator = data_workers.init_data_input_workers(
            model,
            input_blob_names=["data2", "label2", "seq_lengths2"],
            fetch_fun=dummy_fetcher_rnn_ordered1,
            batch_size=32,
            max_buffered_batches=1000,
            num_worker_threads=1,
            dont_rebatch=True,
            input_source_name='train'
        )
        coordinator.start()

        val_model = model_helper.ModelHelper(name="rnn_test_order_val")
        coordinator1 = data_workers.init_data_input_workers(
            val_model,
            input_blob_names=["data2", "label2", "seq_lengths2"],
            fetch_fun=dummy_fetcher_rnn_ordered1,
            batch_size=32,
            max_buffered_batches=1000,
            num_worker_threads=1,
            dont_rebatch=True,
            input_source_name='val'
        )
        coordinator1.start()

        workspace.RunNetOnce(model.param_init_net)
        workspace.CreateNet(model.net)
        workspace.CreateNet(val_model.net)

        while coordinator._coordinators[0]._state._inputs < 900:
            time.sleep(0.01)

        with timeout_guard.CompleteInTimeOrDie(5):
            for m in (model, val_model):
                print(m.net.Proto().name)
                workspace.RunNet(m.net.Proto().name)
                last_data = workspace.FetchBlob('data2')[0][0][0]
                last_lab = workspace.FetchBlob('label2')[0][0]
                last_seq = workspace.FetchBlob('seq_lengths2')[0]

                # Run few rounds
                for _i in range(10):
                    workspace.RunNet(m.net.Proto().name)
                    data = workspace.FetchBlob('data2')[0][0][0]
                    lab = workspace.FetchBlob('label2')[0][0]
                    seq = workspace.FetchBlob('seq_lengths2')[0]
                    self.assertEqual(data, last_data + 1)
                    self.assertEqual(lab, last_lab + 1)
                    self.assertEqual(seq, last_seq + 1)
                    last_data = data
                    last_lab = lab
                    last_seq = seq

            time.sleep(0.2)

            self.assertTrue(coordinator.stop())