File: dataio_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (445 lines) | stat: -rw-r--r-- 17,575 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445





from caffe2.python.dataio import (
    CompositeReader,
    CompositeReaderBuilder,
    ReaderBuilder,
    ReaderWithDelay,
    ReaderWithLimit,
    ReaderWithTimeLimit,
)
from caffe2.python.dataset import Dataset
from caffe2.python.db_file_reader import DBFileReader
from caffe2.python.pipeline import pipe
from caffe2.python.schema import Struct, NewRecord, FeedRecord
from caffe2.python.session import LocalSession
from caffe2.python.task import TaskGroup, final_output, WorkspaceType
from caffe2.python.test_util import TestCase
from caffe2.python.cached_reader import CachedReader
from caffe2.python import core, workspace, schema
from caffe2.python.net_builder import ops

import numpy as np
import numpy.testing as npt
import os
import shutil
import unittest
import tempfile


def make_source_dataset(ws, size=100, offset=0, name=None):
    name = name or "src"
    src_init = core.Net("{}_init".format(name))
    with core.NameScope(name):
        src_values = Struct(('label', np.array(range(offset, offset + size))))
        src_blobs = NewRecord(src_init, src_values)
        src_ds = Dataset(src_blobs, name=name)
        FeedRecord(src_blobs, src_values, ws)
    ws.run(src_init)
    return src_ds


def make_destination_dataset(ws, schema, name=None):
    name = name or 'dst'
    dst_init = core.Net('{}_init'.format(name))
    with core.NameScope(name):
        dst_ds = Dataset(schema, name=name)
        dst_ds.init_empty(dst_init)
    ws.run(dst_init)
    return dst_ds


class TestReaderBuilder(ReaderBuilder):
    def __init__(self, name, size, offset):
        self._schema = schema.Struct(
            ('label', schema.Scalar()),
        )
        self._name = name
        self._size = size
        self._offset = offset
        self._src_ds = None

    def schema(self):
        return self._schema

    def setup(self, ws):
        self._src_ds = make_source_dataset(ws, offset=self._offset, size=self._size,
                                    name=self._name)
        return {}

    def new_reader(self, **kwargs):
        return self._src_ds


class TestCompositeReader(TestCase):
    @unittest.skipIf(os.environ.get('JENKINS_URL'), 'Flaky test on Jenkins')
    def test_composite_reader(self):
        ws = workspace.C.Workspace()
        session = LocalSession(ws)
        num_srcs = 3
        names = ["src_{}".format(i) for i in range(num_srcs)]
        size = 100
        offsets = [i * size for i in range(num_srcs)]
        src_dses = [make_source_dataset(ws, offset=offset, size=size, name=name)
                    for (name, offset) in zip(names, offsets)]

        data = [ws.fetch_blob(str(src.field_blobs[0])) for src in src_dses]
        # Sanity check we didn't overwrite anything
        for d, offset in zip(data, offsets):
            npt.assert_array_equal(d, range(offset, offset + size))

        # Make an identically-sized empty destination dataset
        dst_ds_schema = schema.Struct(
            *[
                (name, src_ds.content().clone_schema())
                for name, src_ds in zip(names, src_dses)
            ]
        )
        dst_ds = make_destination_dataset(ws, dst_ds_schema)

        with TaskGroup() as tg:
            reader = CompositeReader(names,
                                     [src_ds.reader() for src_ds in src_dses])
            pipe(reader, dst_ds.writer(), num_runtime_threads=3)
        session.run(tg)

        for i in range(num_srcs):
            written_data = sorted(
                ws.fetch_blob(str(dst_ds.content()[names[i]].label())))
            npt.assert_array_equal(data[i], written_data, "i: {}".format(i))

    @unittest.skipIf(os.environ.get('JENKINS_URL'), 'Flaky test on Jenkins')
    def test_composite_reader_builder(self):
        ws = workspace.C.Workspace()
        session = LocalSession(ws)
        num_srcs = 3
        names = ["src_{}".format(i) for i in range(num_srcs)]
        size = 100
        offsets = [i * size for i in range(num_srcs)]
        src_ds_builders = [
            TestReaderBuilder(offset=offset, size=size, name=name)
            for (name, offset) in zip(names, offsets)
        ]

        # Make an identically-sized empty destination dataset
        dst_ds_schema = schema.Struct(
            *[
                (name, src_ds_builder.schema())
                for name, src_ds_builder in zip(names, src_ds_builders)
            ]
        )
        dst_ds = make_destination_dataset(ws, dst_ds_schema)

        with TaskGroup() as tg:
            reader_builder = CompositeReaderBuilder(
                names, src_ds_builders)
            reader_builder.setup(ws=ws)
            pipe(reader_builder.new_reader(), dst_ds.writer(),
                 num_runtime_threads=3)
        session.run(tg)

        for name, offset in zip(names, offsets):
            written_data = sorted(
                ws.fetch_blob(str(dst_ds.content()[name].label())))
            npt.assert_array_equal(range(offset, offset + size), written_data,
                                   "name: {}".format(name))


class TestReaderWithLimit(TestCase):
    def test_runtime_threads(self):
        ws = workspace.C.Workspace()
        session = LocalSession(ws)
        src_ds = make_source_dataset(ws)
        totals = [None] * 3

        def proc(rec):
            # executed once
            with ops.task_init():
                counter1 = ops.CreateCounter([], ['global_counter'])
                counter2 = ops.CreateCounter([], ['global_counter2'])
                counter3 = ops.CreateCounter([], ['global_counter3'])
            # executed once per thread
            with ops.task_instance_init():
                task_counter = ops.CreateCounter([], ['task_counter'])
            # executed on each iteration
            ops.CountUp(counter1)
            ops.CountUp(task_counter)
            # executed once per thread
            with ops.task_instance_exit():
                with ops.loop(ops.RetrieveCount(task_counter)):
                    ops.CountUp(counter2)
                ops.CountUp(counter3)
            # executed once
            with ops.task_exit():
                totals[0] = final_output(ops.RetrieveCount(counter1))
                totals[1] = final_output(ops.RetrieveCount(counter2))
                totals[2] = final_output(ops.RetrieveCount(counter3))
            return rec

        # Read full data set from original reader
        with TaskGroup() as tg:
            pipe(src_ds.reader(), num_runtime_threads=8, processor=proc)
        session.run(tg)
        self.assertEqual(totals[0].fetch(), 100)
        self.assertEqual(totals[1].fetch(), 100)
        self.assertEqual(totals[2].fetch(), 8)

        # Read with a count-limited reader
        with TaskGroup() as tg:
            q1 = pipe(src_ds.reader(), num_runtime_threads=2)
            q2 = pipe(
                ReaderWithLimit(q1.reader(), num_iter=25),
                num_runtime_threads=3)
            pipe(q2, processor=proc, num_runtime_threads=6)
        session.run(tg)
        self.assertEqual(totals[0].fetch(), 25)
        self.assertEqual(totals[1].fetch(), 25)
        self.assertEqual(totals[2].fetch(), 6)

    def _test_limit_reader_init_shared(self, size):
        ws = workspace.C.Workspace()
        session = LocalSession(ws)

        # Make source dataset
        src_ds = make_source_dataset(ws, size=size)

        # Make an identically-sized empty destination Dataset
        dst_ds = make_destination_dataset(ws, src_ds.content().clone_schema())

        return ws, session, src_ds, dst_ds

    def _test_limit_reader_shared(self, reader_class, size, expected_read_len,
                                  expected_read_len_threshold,
                                  expected_finish, num_threads, read_delay,
                                  **limiter_args):
        ws, session, src_ds, dst_ds = \
            self._test_limit_reader_init_shared(size)

        # Read without limiter
        # WorkspaceType.GLOBAL is required because we are fetching
        # reader.data_finished() after the TaskGroup finishes.
        with TaskGroup(workspace_type=WorkspaceType.GLOBAL) as tg:
            if read_delay > 0:
                reader = reader_class(ReaderWithDelay(src_ds.reader(),
                                                      read_delay),
                                      **limiter_args)
            else:
                reader = reader_class(src_ds.reader(), **limiter_args)
            pipe(reader, dst_ds.writer(), num_runtime_threads=num_threads)
        session.run(tg)
        read_len = len(sorted(ws.blobs[str(dst_ds.content().label())].fetch()))

        # Do a fuzzy match (expected_read_len +/- expected_read_len_threshold)
        # to eliminate flakiness for time-limited tests
        self.assertGreaterEqual(
            read_len,
            expected_read_len - expected_read_len_threshold)
        self.assertLessEqual(
            read_len,
            expected_read_len + expected_read_len_threshold)
        self.assertEqual(
            sorted(ws.blobs[str(dst_ds.content().label())].fetch()),
            list(range(read_len))
        )
        self.assertEqual(ws.blobs[str(reader.data_finished())].fetch(),
                         expected_finish)

    def test_count_limit_reader_without_limit(self):
        # No iter count specified, should read all records.
        self._test_limit_reader_shared(ReaderWithLimit,
                                       size=100,
                                       expected_read_len=100,
                                       expected_read_len_threshold=0,
                                       expected_finish=True,
                                       num_threads=8,
                                       read_delay=0,
                                       num_iter=None)

    def test_count_limit_reader_with_zero_limit(self):
        # Zero iter count specified, should read 0 records.
        self._test_limit_reader_shared(ReaderWithLimit,
                                       size=100,
                                       expected_read_len=0,
                                       expected_read_len_threshold=0,
                                       expected_finish=False,
                                       num_threads=8,
                                       read_delay=0,
                                       num_iter=0)

    def test_count_limit_reader_with_low_limit(self):
        # Read with limit smaller than size of dataset
        self._test_limit_reader_shared(ReaderWithLimit,
                                       size=100,
                                       expected_read_len=10,
                                       expected_read_len_threshold=0,
                                       expected_finish=False,
                                       num_threads=8,
                                       read_delay=0,
                                       num_iter=10)

    def test_count_limit_reader_with_high_limit(self):
        # Read with limit larger than size of dataset
        self._test_limit_reader_shared(ReaderWithLimit,
                                       size=100,
                                       expected_read_len=100,
                                       expected_read_len_threshold=0,
                                       expected_finish=True,
                                       num_threads=8,
                                       read_delay=0,
                                       num_iter=110)

    def test_time_limit_reader_without_limit(self):
        # No duration specified, should read all records.
        self._test_limit_reader_shared(ReaderWithTimeLimit,
                                       size=100,
                                       expected_read_len=100,
                                       expected_read_len_threshold=0,
                                       expected_finish=True,
                                       num_threads=8,
                                       read_delay=0.1,
                                       duration=0)

    def test_time_limit_reader_with_short_limit(self):
        # Read with insufficient time limit
        size = 50
        num_threads = 4
        sleep_duration = 0.25
        duration = 1
        expected_read_len = int(round(num_threads * duration / sleep_duration))
        # Because the time limit check happens before the delay + read op,
        # subtract a little bit of time to ensure we don't get in an extra read
        duration = duration - 0.25 * sleep_duration

        # NOTE: `expected_read_len_threshold` was added because this test case
        # has significant execution variation under stress. Under stress, we may
        # read strictly less than the expected # of samples; anywhere from
        # [0,N] where N = expected_read_len.
        # Hence we set expected_read_len to N/2, plus or minus N/2.
        self._test_limit_reader_shared(ReaderWithTimeLimit,
                                       size=size,
                                       expected_read_len=expected_read_len / 2,
                                       expected_read_len_threshold=expected_read_len / 2,
                                       expected_finish=False,
                                       num_threads=num_threads,
                                       read_delay=sleep_duration,
                                       duration=duration)

    def test_time_limit_reader_with_long_limit(self):
        # Read with ample time limit
        # NOTE: we don't use `expected_read_len_threshold` because the duration,
        # read_delay, and # threads should be more than sufficient
        self._test_limit_reader_shared(ReaderWithTimeLimit,
                                       size=50,
                                       expected_read_len=50,
                                       expected_read_len_threshold=0,
                                       expected_finish=True,
                                       num_threads=4,
                                       read_delay=0.2,
                                       duration=10)


class TestDBFileReader(TestCase):
    def setUp(self):
        self.temp_paths = []

    def tearDown(self):
        # In case any test method fails, clean up temp paths.
        for path in self.temp_paths:
            self._delete_path(path)

    @staticmethod
    def _delete_path(path):
        if os.path.isfile(path):
            os.remove(path)  # Remove file.
        elif os.path.isdir(path):
            shutil.rmtree(path)  # Remove dir recursively.

    def _make_temp_path(self):
        # Make a temp path as db_path.
        with tempfile.NamedTemporaryFile() as f:
            temp_path = f.name
        self.temp_paths.append(temp_path)
        return temp_path

    @staticmethod
    def _build_source_reader(ws, size):
        src_ds = make_source_dataset(ws, size)
        return src_ds.reader()

    @staticmethod
    def _read_all_data(ws, reader, session):
        dst_ds = make_destination_dataset(ws, reader.schema().clone_schema())

        with TaskGroup() as tg:
            pipe(reader, dst_ds.writer(), num_runtime_threads=8)
        session.run(tg)

        return ws.blobs[str(dst_ds.content().label())].fetch()

    @unittest.skipIf("LevelDB" not in core.C.registered_dbs(), "Need LevelDB")
    def test_cached_reader(self):
        ws = workspace.C.Workspace()
        session = LocalSession(ws)
        db_path = self._make_temp_path()

        # Read data for the first time.
        cached_reader1 = CachedReader(
            self._build_source_reader(ws, 100), db_path, loop_over=False,
        )
        build_cache_step = cached_reader1.build_cache_step()
        session.run(build_cache_step)

        data = self._read_all_data(ws, cached_reader1, session)
        self.assertEqual(sorted(data), list(range(100)))

        # Read data from cache.
        cached_reader2 = CachedReader(
            self._build_source_reader(ws, 200), db_path,
        )
        build_cache_step = cached_reader2.build_cache_step()
        session.run(build_cache_step)

        data = self._read_all_data(ws, cached_reader2, session)
        self.assertEqual(sorted(data), list(range(100)))

        self._delete_path(db_path)

        # We removed cache so we expect to receive data from original reader.
        cached_reader3 = CachedReader(
            self._build_source_reader(ws, 300), db_path,
        )
        build_cache_step = cached_reader3.build_cache_step()
        session.run(build_cache_step)

        data = self._read_all_data(ws, cached_reader3, session)
        self.assertEqual(sorted(data), list(range(300)))

        self._delete_path(db_path)

    @unittest.skipIf("LevelDB" not in core.C.registered_dbs(), "Need LevelDB")
    def test_db_file_reader(self):
        ws = workspace.C.Workspace()
        session = LocalSession(ws)
        db_path = self._make_temp_path()

        # Build a cache DB file.
        cached_reader = CachedReader(
            self._build_source_reader(ws, 100),
            db_path=db_path,
            db_type='LevelDB',
        )
        build_cache_step = cached_reader.build_cache_step()
        session.run(build_cache_step)

        # Read data from cache DB file.
        db_file_reader = DBFileReader(
            db_path=db_path,
            db_type='LevelDB',
        )
        data = self._read_all_data(ws, db_file_reader, session)
        self.assertEqual(sorted(data), list(range(100)))

        self._delete_path(db_path)