1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
## @package dataset
# Module caffe2.python.dataset
"""
Implementation of an in-memory dataset with structured schema.
Use this to store and iterate through datasets with complex schema that
fit in memory.
Iterating through entries of this dataset is very fast since the dataset
is stored as a set of native Caffe2 tensors, thus no type conversion or
deserialization is necessary.
"""
from caffe2.python import core, workspace
from caffe2.python.dataio import Reader, Writer
from caffe2.python.schema import (
Struct, from_blob_list, from_column_list, InitEmptyRecord)
import numpy as np
class _DatasetReader(Reader):
def __init__(self, dataset, name, batch_size=1, enforce_batch_size=False):
"""Don't call this directly. Instead, use dataset.reader()"""
Reader.__init__(self, dataset.content())
self.dataset = dataset
self.name = name or (dataset.name + '_cursor')
self.batch_size = batch_size
self.enforce_batch_size = enforce_batch_size
self.cursor = None
def setup_ex(self, init_net, exit_net):
if self.cursor is None:
self.cursor = init_net.CreateTreeCursor(
[],
init_net.NextScopedBlob(self.name),
fields=self.dataset.fields)
def read(self, read_net):
assert self.cursor, 'setup not called.'
content = self.dataset.content()
with core.NameScope(read_net.NextName(self.name)):
fields = read_net.ReadNextBatch(
[self.cursor] + content.field_blobs(),
content.field_names(),
batch_size=self.batch_size,
enforce_batch_size=self.enforce_batch_size)
fields = core.output_to_list(fields)
return (read_net.IsEmpty([fields[0]]), fields)
def reset(self, net):
net.ResetCursor([self.cursor], [])
class _DatasetRandomReader(Reader):
def __init__(self, dataset, name, indices, batch_size=1, loop_over=False,
enforce_batch_size=False):
"""Don't call this directly. Instead, use dataset.random_reader()"""
Reader.__init__(self, dataset.content())
self.dataset = dataset
self.cursor = None
self.name = name or (dataset.name + '_cursor')
self.indices = indices
self.batch_size = batch_size
self.loop_over = loop_over
self.enforce_batch_size = enforce_batch_size
def setup_ex(self, init_net, exit_net):
if self.cursor is None:
self.cursor = init_net.CreateTreeCursor(
[],
init_net.NextScopedBlob(self.name),
fields=self.dataset.fields)
def reset(self, net):
net.ResetCursor([self.cursor], [])
def computeoffset(self, net):
self.reset(net)
offsets = net.ComputeOffset(
[self.cursor] + self.dataset.content().field_blobs(),
'offsets')
self.offsets = offsets
def sort_and_shuffle(self, net, sort_by_field=None,
shuffle_size=1, batch_size=1):
# no sorting by default
content = self.dataset.content()
sort_by_field_idx = -1
if sort_by_field:
assert sort_by_field in content.field_names(), (
'Must be valid field.')
sort_by_field_idx = content.field_names().index(sort_by_field)
self.reset(net)
indices = net.SortAndShuffle(
[self.cursor] + content.field_blobs(),
'indices',
sort_by_field_idx=sort_by_field_idx,
shuffle_size=shuffle_size,
batch_size=batch_size)
self.indices = indices
def read(self, read_net):
assert self.cursor, 'setup_ex not called'
assert self.indices, 'sort_and_shuffle not called'
assert self.offsets, 'computeoffset not called'
content = self.dataset.content()
with core.NameScope(read_net.NextName(self.name)):
fields = read_net.ReadRandomBatch(
[self.cursor, self.indices, self.offsets] + (
content.field_blobs()),
content.field_names(),
batch_size=self.batch_size,
enforce_batch_size=self.enforce_batch_size,
loop_over=self.loop_over)
fields = core.output_to_list(fields)
return (read_net.IsEmpty([fields[0]]), fields)
class _DatasetWriter(Writer):
def __init__(self, content):
"""Don't call this directly. Use dataset.writer() instead."""
self._content = content
self.mutex = None
def setup_ex(self, init_net, exit_net):
if self.mutex is None:
self.mutex = init_net.CreateMutex([])
def write(self, writer_net, fields):
"""
Add operations to `net` that append the blobs in `fields` to the end
of the dataset. An additional operator will also be added that checks
the consistency of the data in `fields` against the dataset schema.
Args:
writer_net: The net that will contain the Append operators.
fields: A list of BlobReference to be appeneded to this dataset.
"""
assert self.mutex is not None, 'setup not called.'
field_blobs = self._content.field_blobs()
assert len(fields) == len(field_blobs), (
'Expected %s fields, got %s.' % (len(field_blobs), len(fields)))
writer_net.CheckDatasetConsistency(
fields, [], fields=self._content.field_names())
writer_net.AtomicAppend(
[self.mutex] + field_blobs + list(fields),
field_blobs)
def commit(self, finish_net):
"""Commit is a no-op for an in-memory dataset."""
pass
def Const(net, value, dtype=None, name=None):
"""
Create a 'constant' by first creating an external input in the given
net, and then feeding the corresponding blob with its provided value
in the current workspace. The name is automatically generated in order
to avoid clashes with existing blob names.
"""
assert isinstance(net, core.Net), 'net must be a core.Net instance.'
value = np.array(value, dtype=dtype)
blob = net.AddExternalInput(net.NextName(prefix=name))
workspace.FeedBlob(str(blob), value)
return blob
def execution_step_with_progress(name, init_net, substeps, rows_read):
# progress reporter
report_net = core.Net('report_net')
report_net.Print([rows_read], [])
return core.execution_step(
name,
substeps,
report_net=report_net,
concurrent_substeps=True,
report_interval=5)
class Dataset(object):
"""Represents an in-memory dataset with fixed schema.
Use this to store and iterate through datasets with complex schema that
fit in memory.
Iterating through entries of this dataset is very fast since the dataset
is stored as a set of native Caffe2 tensors, thus no type conversion or
deserialization is necessary.
"""
def __init__(self, fields, name=None):
"""Create an un-initialized dataset with schema provided by `fields`.
Before this dataset can be used, it must be initialized, either by
`init_empty` or `init_from_dataframe`.
Args:
fields: either a schema.Struct or a list of field names in a format
compatible with the one described in schema.py.
name: optional name to prepend to blobs that will store the data.
"""
assert isinstance(fields, list) or isinstance(fields, Struct), (
'fields must be either a Struct or a list of raw field names.')
if isinstance(fields, list):
fields = from_column_list(fields)
self.schema = fields
self.fields = fields.field_names()
self.field_types = fields.field_types()
self.name = name or 'dataset'
self.field_blobs = fields.field_blobs() if fields.has_blobs() else None
def trim(self, net, multiple_of):
"""
Trims the contents of this dataset so that the number of records is
multiple of the given argument.
"""
net.TrimDataset(
self.field_blobs,
self.field_blobs,
fields=self.fields,
multiple_of=multiple_of)
def init_empty(self, init_net):
"""Initialize the blobs for this dataset with empty values.
Empty arrays will be immediately fed into the current workspace,
and `init_net` will take those blobs as external inputs.
"""
self.field_blobs = InitEmptyRecord(
init_net, self.schema.clone_schema()).field_blobs()
def init_from_dataframe(self, net, dataframe):
"""Initialize the blobs for this dataset from a Pandas dataframe.
Each column of the dataframe will be immediately fed into the current
workspace, and the `net` will take this blobs as external inputs.
"""
assert len(self.fields) == len(dataframe.columns)
self.field_blobs = [
Const(net, dataframe.as_matrix([col]).flatten(), name=field)
for col, field in enumerate(self.fields)]
def get_blobs(self):
"""
Return the list of BlobReference pointing to the blobs that contain
the data for this dataset.
"""
assert self
return self.field_blobs
def content(self):
"""
Return a Record of BlobReferences pointing to the full content of
this dataset.
"""
return from_blob_list(self.schema, self.field_blobs)
def field_names(self):
"""Return the list of field names for this dataset."""
return self.fields
def field_types(self):
"""
Return the list of field dtypes for this dataset.
If a list of strings, not a schema.Struct, was passed to the
constructor, this will return a list of dtype(np.void).
"""
return self.field_types
def reader(self, init_net=None, cursor_name=None, batch_size=1,
enforce_batch_size=False):
"""Create a Reader object that is used to iterate through the dataset.
This will append operations to `init_net` that create a TreeCursor,
used to iterate through the data.
NOTE: Currently, it is not safe to append to a dataset while reading.
Args:
init_net: net that will be run once to create the cursor.
cursor_name: optional name for the blob containing a pointer
to the cursor.
batch_size: how many samples to read per iteration.
Returns:
A _DatasetReader that can be used to create operators that will
iterate through the dataset.
"""
assert self.field_blobs, 'Dataset not initialized.'
reader = _DatasetReader(self, cursor_name, batch_size,
enforce_batch_size)
if init_net is not None:
reader.setup_ex(init_net, None)
return reader
def random_reader(self, init_net=None, indices=None, cursor_name=None,
batch_size=1, loop_over=False, enforce_batch_size=False):
"""Create a Reader object that is used to iterate through the dataset.
NOTE: The reader order depends on the order in indices.
Args:
init_net: net that will be run once to create the cursor.
indices: blob of reading order
cursor_name: optional name for the blob containing a pointer
to the cursor.
batch_size: how many samples to read per iteration.
loop_over: repeat the dataset indefinitely (in the same order)
Returns:
A DatasetReader that can be used to create operators that will
iterate through the dataset according to indices.
"""
assert self.field_blobs, 'Dataset not initialized.'
reader = _DatasetRandomReader(
self, cursor_name, indices, batch_size, loop_over,
enforce_batch_size)
if init_net is not None:
reader.setup_ex(init_net, None)
return reader
def writer(self, init_net=None):
"""Create a Writer that can be used to append entries into the dataset.
NOTE: Currently, it is not safe to append to a dataset
while reading from it.
NOTE: Currently implementation of writer is not thread safe.
TODO: fixme
Args:
init_net: net that will be run once in order to create the writer.
(currently not used)
"""
assert self.field_blobs, 'Dataset not initialized.'
writer = _DatasetWriter(self.content())
if init_net is not None:
writer.setup_ex(init_net, None)
return writer
|