1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
## @package char_rnn
# Module caffe2.python.examples.char_rnn
from caffe2.python import core, workspace, model_helper, utils, brew
from caffe2.python.rnn_cell import LSTM
from caffe2.proto import caffe2_pb2
from caffe2.python.optimizer import build_sgd
import argparse
import logging
import numpy as np
from datetime import datetime
'''
This script takes a text file as input and uses a recurrent neural network
to learn to predict next character in a sequence.
'''
logging.basicConfig()
log = logging.getLogger("char_rnn")
log.setLevel(logging.DEBUG)
# Default set() here is intentional as it would accumulate values like a global
# variable
def CreateNetOnce(net, created_names=set()): # noqa
name = net.Name()
if name not in created_names:
created_names.add(name)
workspace.CreateNet(net)
class CharRNN(object):
def __init__(self, args):
self.seq_length = args.seq_length
self.batch_size = args.batch_size
self.iters_to_report = args.iters_to_report
self.hidden_size = args.hidden_size
with open(args.train_data) as f:
self.text = f.read()
self.vocab = list(set(self.text))
self.char_to_idx = {ch: idx for idx, ch in enumerate(self.vocab)}
self.idx_to_char = {idx: ch for idx, ch in enumerate(self.vocab)}
self.D = len(self.char_to_idx)
print("Input has {} characters. Total input size: {}".format(
len(self.vocab), len(self.text)))
def CreateModel(self):
log.debug("Start training")
model = model_helper.ModelHelper(name="char_rnn")
input_blob, seq_lengths, hidden_init, cell_init, target = \
model.net.AddExternalInputs(
'input_blob',
'seq_lengths',
'hidden_init',
'cell_init',
'target',
)
hidden_output_all, self.hidden_output, _, self.cell_state = LSTM(
model, input_blob, seq_lengths, (hidden_init, cell_init),
self.D, self.hidden_size, scope="LSTM")
output = brew.fc(
model,
hidden_output_all,
None,
dim_in=self.hidden_size,
dim_out=self.D,
axis=2
)
# axis is 2 as first two are T (time) and N (batch size).
# We treat them as one big batch of size T * N
softmax = model.net.Softmax(output, 'softmax', axis=2)
softmax_reshaped, _ = model.net.Reshape(
softmax, ['softmax_reshaped', '_'], shape=[-1, self.D])
# Create a copy of the current net. We will use it on the forward
# pass where we don't need loss and backward operators
self.forward_net = core.Net(model.net.Proto())
xent = model.net.LabelCrossEntropy([softmax_reshaped, target], 'xent')
# Loss is average both across batch and through time
# Thats why the learning rate below is multiplied by self.seq_length
loss = model.net.AveragedLoss(xent, 'loss')
model.AddGradientOperators([loss])
# use build_sdg function to build an optimizer
build_sgd(
model,
base_learning_rate=0.1 * self.seq_length,
policy="step",
stepsize=1,
gamma=0.9999
)
self.model = model
self.predictions = softmax
self.loss = loss
self.prepare_state = core.Net("prepare_state")
self.prepare_state.Copy(self.hidden_output, hidden_init)
self.prepare_state.Copy(self.cell_state, cell_init)
def _idx_at_pos(self, pos):
return self.char_to_idx[self.text[pos]]
def TrainModel(self):
log.debug("Training model")
workspace.RunNetOnce(self.model.param_init_net)
# As though we predict the same probability for each character
smooth_loss = -np.log(1.0 / self.D) * self.seq_length
last_n_iter = 0
last_n_loss = 0.0
num_iter = 0
N = len(self.text)
# We split text into batch_size pieces. Each piece will be used only
# by a corresponding batch during the training process
text_block_positions = np.zeros(self.batch_size, dtype=np.int32)
text_block_size = N // self.batch_size
text_block_starts = list(range(0, N, text_block_size))
text_block_sizes = [text_block_size] * self.batch_size
text_block_sizes[self.batch_size - 1] += N % self.batch_size
assert sum(text_block_sizes) == N
# Writing to output states which will be copied to input
# states within the loop below
workspace.FeedBlob(self.hidden_output, np.zeros(
[1, self.batch_size, self.hidden_size], dtype=np.float32
))
workspace.FeedBlob(self.cell_state, np.zeros(
[1, self.batch_size, self.hidden_size], dtype=np.float32
))
workspace.CreateNet(self.prepare_state)
# We iterate over text in a loop many times. Each time we peak
# seq_length segment and feed it to LSTM as a sequence
last_time = datetime.now()
progress = 0
while True:
workspace.FeedBlob(
"seq_lengths",
np.array([self.seq_length] * self.batch_size,
dtype=np.int32)
)
workspace.RunNet(self.prepare_state.Name())
input = np.zeros(
[self.seq_length, self.batch_size, self.D]
).astype(np.float32)
target = np.zeros(
[self.seq_length * self.batch_size]
).astype(np.int32)
for e in range(self.batch_size):
for i in range(self.seq_length):
pos = text_block_starts[e] + text_block_positions[e]
input[i][e][self._idx_at_pos(pos)] = 1
target[i * self.batch_size + e] =\
self._idx_at_pos((pos + 1) % N)
text_block_positions[e] = (
text_block_positions[e] + 1) % text_block_sizes[e]
progress += 1
workspace.FeedBlob('input_blob', input)
workspace.FeedBlob('target', target)
CreateNetOnce(self.model.net)
workspace.RunNet(self.model.net.Name())
num_iter += 1
last_n_iter += 1
if num_iter % self.iters_to_report == 0:
new_time = datetime.now()
print("Characters Per Second: {}". format(
int(progress / (new_time - last_time).total_seconds())
))
print("Iterations Per Second: {}". format(
int(self.iters_to_report /
(new_time - last_time).total_seconds())
))
last_time = new_time
progress = 0
print("{} Iteration {} {}".
format('-' * 10, num_iter, '-' * 10))
loss = workspace.FetchBlob(self.loss) * self.seq_length
smooth_loss = 0.999 * smooth_loss + 0.001 * loss
last_n_loss += loss
if num_iter % self.iters_to_report == 0:
self.GenerateText(500, np.random.choice(self.vocab))
log.debug("Loss since last report: {}"
.format(last_n_loss / last_n_iter))
log.debug("Smooth loss: {}".format(smooth_loss))
last_n_loss = 0.0
last_n_iter = 0
def GenerateText(self, num_characters, ch):
# Given a starting symbol we feed a fake sequence of size 1 to
# our RNN num_character times. After each time we use output
# probabilities to pick a next character to feed to the network.
# Same character becomes part of the output
CreateNetOnce(self.forward_net)
text = '' + ch
for _i in range(num_characters):
workspace.FeedBlob(
"seq_lengths", np.array([1] * self.batch_size, dtype=np.int32))
workspace.RunNet(self.prepare_state.Name())
input = np.zeros([1, self.batch_size, self.D]).astype(np.float32)
input[0][0][self.char_to_idx[ch]] = 1
workspace.FeedBlob("input_blob", input)
workspace.RunNet(self.forward_net.Name())
p = workspace.FetchBlob(self.predictions)
next = np.random.choice(self.D, p=p[0][0])
ch = self.idx_to_char[next]
text += ch
print(text)
@utils.debug
def main():
parser = argparse.ArgumentParser(
description="Caffe2: Char RNN Training"
)
parser.add_argument("--train_data", type=str, default=None,
help="Path to training data in a text file format",
required=True)
parser.add_argument("--seq_length", type=int, default=25,
help="One training example sequence length")
parser.add_argument("--batch_size", type=int, default=1,
help="Training batch size")
parser.add_argument("--iters_to_report", type=int, default=500,
help="How often to report loss and generate text")
parser.add_argument("--hidden_size", type=int, default=100,
help="Dimension of the hidden representation")
parser.add_argument("--gpu", action="store_true",
help="If set, training is going to use GPU 0")
args = parser.parse_args()
device = core.DeviceOption(
workspace.GpuDeviceType if args.gpu else caffe2_pb2.CPU, 0)
with core.DeviceScope(device):
model = CharRNN(args)
model.CreateModel()
model.TrainModel()
if __name__ == '__main__':
workspace.GlobalInit(['caffe2', '--caffe2_log_level=2'])
main()
|