1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
|
# Module caffe2.python.examples.resnet50_trainer
import argparse
import logging
import numpy as np
import time
import os
from caffe2.python import core, workspace, experiment_util, data_parallel_model
from caffe2.python import dyndep, optimizer
from caffe2.python import timeout_guard, model_helper, brew
from caffe2.proto import caffe2_pb2
import caffe2.python.models.resnet as resnet
import caffe2.python.models.shufflenet as shufflenet
from caffe2.python.modeling.initializers import Initializer, PseudoFP16Initializer
import caffe2.python.predictor.predictor_exporter as pred_exp
import caffe2.python.predictor.predictor_py_utils as pred_utils
from caffe2.python.predictor_constants import predictor_constants
'''
Parallelized multi-GPU distributed trainer for Resne(X)t & Shufflenet.
Can be used to train on imagenet data, for example.
The default parameters can train a standard Resnet-50 (1x64d), and parameters
can be provided to train ResNe(X)t models (e.g., ResNeXt-101 32x4d).
To run the trainer in single-machine multi-gpu mode by setting num_shards = 1.
To run the trainer in multi-machine multi-gpu mode with M machines,
run the same program on all machines, specifying num_shards = M, and
shard_id = a unique integer in the set [0, M-1].
For rendezvous (the trainer processes have to know about each other),
you can either use a directory path that is visible to all processes
(e.g. NFS directory), or use a Redis instance. Use the former by
passing the `file_store_path` argument. Use the latter by passing the
`redis_host` and `redis_port` arguments.
'''
logging.basicConfig()
log = logging.getLogger("Imagenet_trainer")
log.setLevel(logging.DEBUG)
dyndep.InitOpsLibrary('@/caffe2/caffe2/distributed:file_store_handler_ops')
dyndep.InitOpsLibrary('@/caffe2/caffe2/distributed:redis_store_handler_ops')
def AddImageInput(
model,
reader,
batch_size,
img_size,
dtype,
is_test,
mean_per_channel=None,
std_per_channel=None,
):
'''
The image input operator loads image and label data from the reader and
applies transformations to the images (random cropping, mirroring, ...).
'''
data, label = brew.image_input(
model,
reader, ["data", "label"],
batch_size=batch_size,
output_type=dtype,
use_gpu_transform=True if core.IsGPUDeviceType(model._device_type) else False,
use_caffe_datum=True,
mean_per_channel=mean_per_channel,
std_per_channel=std_per_channel,
# mean_per_channel takes precedence over mean
mean=128.,
std=128.,
scale=256,
crop=img_size,
mirror=1,
is_test=is_test,
)
data = model.StopGradient(data, data)
def AddNullInput(model, reader, batch_size, img_size, dtype):
'''
The null input function uses a gaussian fill operator to emulate real image
input. A label blob is hardcoded to a single value. This is useful if you
want to test compute throughput or don't have a dataset available.
'''
suffix = "_fp16" if dtype == "float16" else ""
model.param_init_net.GaussianFill(
[],
["data" + suffix],
shape=[batch_size, 3, img_size, img_size],
)
if dtype == "float16":
model.param_init_net.FloatToHalf("data" + suffix, "data")
model.param_init_net.ConstantFill(
[],
["label"],
shape=[batch_size],
value=1,
dtype=core.DataType.INT32,
)
def SaveModel(args, train_model, epoch, use_ideep):
prefix = "[]_{}".format(train_model._device_prefix, train_model._devices[0])
predictor_export_meta = pred_exp.PredictorExportMeta(
predict_net=train_model.net.Proto(),
parameters=data_parallel_model.GetCheckpointParams(train_model),
inputs=[prefix + "/data"],
outputs=[prefix + "/softmax"],
shapes={
prefix + "/softmax": (1, args.num_labels),
prefix + "/data": (args.num_channels, args.image_size, args.image_size)
}
)
# save the train_model for the current epoch
model_path = "%s/%s_%d.mdl" % (
args.file_store_path,
args.save_model_name,
epoch,
)
# set db_type to be "minidb" instead of "log_file_db", which breaks
# the serialization in save_to_db. Need to switch back to log_file_db
# after migration
pred_exp.save_to_db(
db_type="minidb",
db_destination=model_path,
predictor_export_meta=predictor_export_meta,
use_ideep=use_ideep
)
def LoadModel(path, model, use_ideep):
'''
Load pretrained model from file
'''
log.info("Loading path: {}".format(path))
meta_net_def = pred_exp.load_from_db(path, 'minidb')
init_net = core.Net(pred_utils.GetNet(
meta_net_def, predictor_constants.GLOBAL_INIT_NET_TYPE))
predict_init_net = core.Net(pred_utils.GetNet(
meta_net_def, predictor_constants.PREDICT_INIT_NET_TYPE))
if use_ideep:
predict_init_net.RunAllOnIDEEP()
else:
predict_init_net.RunAllOnGPU()
if use_ideep:
init_net.RunAllOnIDEEP()
else:
init_net.RunAllOnGPU()
assert workspace.RunNetOnce(predict_init_net)
assert workspace.RunNetOnce(init_net)
# Hack: fix iteration counter which is in CUDA context after load model
itercnt = workspace.FetchBlob("optimizer_iteration")
workspace.FeedBlob(
"optimizer_iteration",
itercnt,
device_option=core.DeviceOption(caffe2_pb2.CPU, 0)
)
def RunEpoch(
args,
epoch,
train_model,
test_model,
total_batch_size,
num_shards,
expname,
explog,
):
'''
Run one epoch of the trainer.
TODO: add checkpointing here.
'''
# TODO: add loading from checkpoint
log.info("Starting epoch {}/{}".format(epoch, args.num_epochs))
epoch_iters = int(args.epoch_size / total_batch_size / num_shards)
test_epoch_iters = int(args.test_epoch_size / total_batch_size / num_shards)
for i in range(epoch_iters):
# This timeout is required (temporarily) since CUDA-NCCL
# operators might deadlock when synchronizing between GPUs.
timeout = args.first_iter_timeout if i == 0 else args.timeout
with timeout_guard.CompleteInTimeOrDie(timeout):
t1 = time.time()
workspace.RunNet(train_model.net.Proto().name)
t2 = time.time()
dt = t2 - t1
fmt = "Finished iteration {}/{} of epoch {} ({:.2f} images/sec)"
log.info(fmt.format(i + 1, epoch_iters, epoch, total_batch_size / dt))
prefix = "{}_{}".format(
train_model._device_prefix,
train_model._devices[0])
accuracy = workspace.FetchBlob(prefix + '/accuracy')
loss = workspace.FetchBlob(prefix + '/loss')
train_fmt = "Training loss: {}, accuracy: {}"
log.info(train_fmt.format(loss, accuracy))
num_images = epoch * epoch_iters * total_batch_size
prefix = "{}_{}".format(train_model._device_prefix, train_model._devices[0])
accuracy = workspace.FetchBlob(prefix + '/accuracy')
loss = workspace.FetchBlob(prefix + '/loss')
learning_rate = workspace.FetchBlob(
data_parallel_model.GetLearningRateBlobNames(train_model)[0]
)
test_accuracy = 0
test_accuracy_top5 = 0
if test_model is not None:
# Run 100 iters of testing
ntests = 0
for _ in range(test_epoch_iters):
workspace.RunNet(test_model.net.Proto().name)
for g in test_model._devices:
test_accuracy += np.asscalar(workspace.FetchBlob(
"{}_{}".format(test_model._device_prefix, g) + '/accuracy'
))
test_accuracy_top5 += np.asscalar(workspace.FetchBlob(
"{}_{}".format(test_model._device_prefix, g) + '/accuracy_top5'
))
ntests += 1
test_accuracy /= ntests
test_accuracy_top5 /= ntests
else:
test_accuracy = (-1)
test_accuracy_top5 = (-1)
explog.log(
input_count=num_images,
batch_count=(i + epoch * epoch_iters),
additional_values={
'accuracy': accuracy,
'loss': loss,
'learning_rate': learning_rate,
'epoch': epoch,
'top1_test_accuracy': test_accuracy,
'top5_test_accuracy': test_accuracy_top5,
}
)
assert loss < 40, "Exploded gradients :("
# TODO: add checkpointing
return epoch + 1
def Train(args):
if args.model == "resnext":
model_name = "resnext" + str(args.num_layers)
elif args.model == "shufflenet":
model_name = "shufflenet"
# Either use specified device list or generate one
if args.gpus is not None:
gpus = [int(x) for x in args.gpus.split(',')]
num_gpus = len(gpus)
else:
gpus = list(range(args.num_gpus))
num_gpus = args.num_gpus
log.info("Running on GPUs: {}".format(gpus))
# Verify valid batch size
total_batch_size = args.batch_size
batch_per_device = total_batch_size // num_gpus
assert \
total_batch_size % num_gpus == 0, \
"Number of GPUs must divide batch size"
# Verify valid image mean/std per channel
if args.image_mean_per_channel:
assert \
len(args.image_mean_per_channel) == args.num_channels, \
"The number of channels of image mean doesn't match input"
if args.image_std_per_channel:
assert \
len(args.image_std_per_channel) == args.num_channels, \
"The number of channels of image std doesn't match input"
# Round down epoch size to closest multiple of batch size across machines
global_batch_size = total_batch_size * args.num_shards
epoch_iters = int(args.epoch_size / global_batch_size)
assert \
epoch_iters > 0, \
"Epoch size must be larger than batch size times shard count"
args.epoch_size = epoch_iters * global_batch_size
log.info("Using epoch size: {}".format(args.epoch_size))
# Create ModelHelper object
if args.use_ideep:
train_arg_scope = {
'use_cudnn': False,
'cudnn_exhaustive_search': False,
'training_mode': 1
}
else:
train_arg_scope = {
'order': 'NCHW',
'use_cudnn': True,
'cudnn_exhaustive_search': True,
'ws_nbytes_limit': (args.cudnn_workspace_limit_mb * 1024 * 1024),
}
train_model = model_helper.ModelHelper(
name=model_name, arg_scope=train_arg_scope
)
num_shards = args.num_shards
shard_id = args.shard_id
# Expect interfaces to be comma separated.
# Use of multiple network interfaces is not yet complete,
# so simply use the first one in the list.
interfaces = args.distributed_interfaces.split(",")
# Rendezvous using MPI when run with mpirun
if os.getenv("OMPI_COMM_WORLD_SIZE") is not None:
num_shards = int(os.getenv("OMPI_COMM_WORLD_SIZE", 1))
shard_id = int(os.getenv("OMPI_COMM_WORLD_RANK", 0))
if num_shards > 1:
rendezvous = dict(
kv_handler=None,
num_shards=num_shards,
shard_id=shard_id,
engine="GLOO",
transport=args.distributed_transport,
interface=interfaces[0],
mpi_rendezvous=True,
exit_nets=None)
elif num_shards > 1:
# Create rendezvous for distributed computation
store_handler = "store_handler"
if args.redis_host is not None:
# Use Redis for rendezvous if Redis host is specified
workspace.RunOperatorOnce(
core.CreateOperator(
"RedisStoreHandlerCreate", [], [store_handler],
host=args.redis_host,
port=args.redis_port,
prefix=args.run_id,
)
)
else:
# Use filesystem for rendezvous otherwise
workspace.RunOperatorOnce(
core.CreateOperator(
"FileStoreHandlerCreate", [], [store_handler],
path=args.file_store_path,
prefix=args.run_id,
)
)
rendezvous = dict(
kv_handler=store_handler,
shard_id=shard_id,
num_shards=num_shards,
engine="GLOO",
transport=args.distributed_transport,
interface=interfaces[0],
exit_nets=None)
else:
rendezvous = None
# Model building functions
def create_resnext_model_ops(model, loss_scale):
initializer = (PseudoFP16Initializer if args.dtype == 'float16'
else Initializer)
with brew.arg_scope([brew.conv, brew.fc],
WeightInitializer=initializer,
BiasInitializer=initializer,
enable_tensor_core=args.enable_tensor_core,
float16_compute=args.float16_compute):
pred = resnet.create_resnext(
model,
"data",
num_input_channels=args.num_channels,
num_labels=args.num_labels,
num_layers=args.num_layers,
num_groups=args.resnext_num_groups,
num_width_per_group=args.resnext_width_per_group,
no_bias=True,
no_loss=True,
)
if args.dtype == 'float16':
pred = model.net.HalfToFloat(pred, pred + '_fp32')
softmax, loss = model.SoftmaxWithLoss([pred, 'label'],
['softmax', 'loss'])
loss = model.Scale(loss, scale=loss_scale)
brew.accuracy(model, [softmax, "label"], "accuracy", top_k=1)
brew.accuracy(model, [softmax, "label"], "accuracy_top5", top_k=5)
return [loss]
def create_shufflenet_model_ops(model, loss_scale):
initializer = (PseudoFP16Initializer if args.dtype == 'float16'
else Initializer)
with brew.arg_scope([brew.conv, brew.fc],
WeightInitializer=initializer,
BiasInitializer=initializer,
enable_tensor_core=args.enable_tensor_core,
float16_compute=args.float16_compute):
pred = shufflenet.create_shufflenet(
model,
"data",
num_input_channels=args.num_channels,
num_labels=args.num_labels,
no_loss=True,
)
if args.dtype == 'float16':
pred = model.net.HalfToFloat(pred, pred + '_fp32')
softmax, loss = model.SoftmaxWithLoss([pred, 'label'],
['softmax', 'loss'])
loss = model.Scale(loss, scale=loss_scale)
brew.accuracy(model, [softmax, "label"], "accuracy", top_k=1)
brew.accuracy(model, [softmax, "label"], "accuracy_top5", top_k=5)
return [loss]
def add_optimizer(model):
stepsz = int(30 * args.epoch_size / total_batch_size / num_shards)
if args.float16_compute:
# TODO: merge with multi-precision optimizer
opt = optimizer.build_fp16_sgd(
model,
args.base_learning_rate,
momentum=0.9,
nesterov=1,
weight_decay=args.weight_decay, # weight decay included
policy="step",
stepsize=stepsz,
gamma=0.1
)
else:
optimizer.add_weight_decay(model, args.weight_decay)
opt = optimizer.build_multi_precision_sgd(
model,
args.base_learning_rate,
momentum=0.9,
nesterov=1,
policy="step",
stepsize=stepsz,
gamma=0.1
)
return opt
# Define add_image_input function.
# Depends on the "train_data" argument.
# Note that the reader will be shared with between all GPUS.
if args.train_data == "null":
def add_image_input(model):
AddNullInput(
model,
None,
batch_size=batch_per_device,
img_size=args.image_size,
dtype=args.dtype,
)
else:
reader = train_model.CreateDB(
"reader",
db=args.train_data,
db_type=args.db_type,
num_shards=num_shards,
shard_id=shard_id,
)
def add_image_input(model):
AddImageInput(
model,
reader,
batch_size=batch_per_device,
img_size=args.image_size,
dtype=args.dtype,
is_test=False,
mean_per_channel=args.image_mean_per_channel,
std_per_channel=args.image_std_per_channel,
)
def add_post_sync_ops(model):
"""Add ops applied after initial parameter sync."""
for param_info in model.GetOptimizationParamInfo(model.GetParams()):
if param_info.blob_copy is not None:
model.param_init_net.HalfToFloat(
param_info.blob,
param_info.blob_copy[core.DataType.FLOAT]
)
data_parallel_model.Parallelize(
train_model,
input_builder_fun=add_image_input,
forward_pass_builder_fun=create_resnext_model_ops
if args.model == "resnext" else create_shufflenet_model_ops,
optimizer_builder_fun=add_optimizer,
post_sync_builder_fun=add_post_sync_ops,
devices=gpus,
rendezvous=rendezvous,
optimize_gradient_memory=False,
use_nccl=args.use_nccl,
cpu_device=args.use_cpu,
ideep=args.use_ideep,
shared_model=args.use_cpu,
combine_spatial_bn=args.use_cpu,
)
data_parallel_model.OptimizeGradientMemory(train_model, {}, set(), False)
workspace.RunNetOnce(train_model.param_init_net)
workspace.CreateNet(train_model.net)
# Add test model, if specified
test_model = None
if (args.test_data is not None):
log.info("----- Create test net ----")
if args.use_ideep:
test_arg_scope = {
'use_cudnn': False,
'cudnn_exhaustive_search': False,
}
else:
test_arg_scope = {
'order': "NCHW",
'use_cudnn': True,
'cudnn_exhaustive_search': True,
}
test_model = model_helper.ModelHelper(
name=model_name + "_test",
arg_scope=test_arg_scope,
init_params=False,
)
test_reader = test_model.CreateDB(
"test_reader",
db=args.test_data,
db_type=args.db_type,
)
def test_input_fn(model):
AddImageInput(
model,
test_reader,
batch_size=batch_per_device,
img_size=args.image_size,
dtype=args.dtype,
is_test=True,
mean_per_channel=args.image_mean_per_channel,
std_per_channel=args.image_std_per_channel,
)
data_parallel_model.Parallelize(
test_model,
input_builder_fun=test_input_fn,
forward_pass_builder_fun=create_resnext_model_ops
if args.model == "resnext" else create_shufflenet_model_ops,
post_sync_builder_fun=add_post_sync_ops,
param_update_builder_fun=None,
devices=gpus,
use_nccl=args.use_nccl,
cpu_device=args.use_cpu,
)
workspace.RunNetOnce(test_model.param_init_net)
workspace.CreateNet(test_model.net)
epoch = 0
# load the pre-trained model and reset epoch
if args.load_model_path is not None:
LoadModel(args.load_model_path, train_model, args.use_ideep)
# Sync the model params
data_parallel_model.FinalizeAfterCheckpoint(train_model)
# reset epoch. load_model_path should end with *_X.mdl,
# where X is the epoch number
last_str = args.load_model_path.split('_')[-1]
if last_str.endswith('.mdl'):
epoch = int(last_str[:-4])
log.info("Reset epoch to {}".format(epoch))
else:
log.warning("The format of load_model_path doesn't match!")
expname = "%s_gpu%d_b%d_L%d_lr%.2f_v2" % (
model_name,
args.num_gpus,
total_batch_size,
args.num_labels,
args.base_learning_rate,
)
explog = experiment_util.ModelTrainerLog(expname, args)
# Run the training one epoch a time
while epoch < args.num_epochs:
epoch = RunEpoch(
args,
epoch,
train_model,
test_model,
total_batch_size,
num_shards,
expname,
explog
)
# Save the model for each epoch
SaveModel(args, train_model, epoch, args.use_ideep)
model_path = "%s/%s_" % (
args.file_store_path,
args.save_model_name
)
# remove the saved model from the previous epoch if it exists
if os.path.isfile(model_path + str(epoch - 1) + ".mdl"):
os.remove(model_path + str(epoch - 1) + ".mdl")
def main():
# TODO: use argv
parser = argparse.ArgumentParser(
description="Caffe2: ImageNet Trainer"
)
parser.add_argument("--train_data", type=str, default=None, required=True,
help="Path to training data (or 'null' to simulate)")
parser.add_argument("--num_layers", type=int, default=50,
help="The number of layers in ResNe(X)t model")
parser.add_argument("--resnext_num_groups", type=int, default=1,
help="The cardinality of resnext")
parser.add_argument("--resnext_width_per_group", type=int, default=64,
help="The cardinality of resnext")
parser.add_argument("--test_data", type=str, default=None,
help="Path to test data")
parser.add_argument("--image_mean_per_channel", type=float, nargs='+',
help="The per channel mean for the images")
parser.add_argument("--image_std_per_channel", type=float, nargs='+',
help="The per channel standard deviation for the images")
parser.add_argument("--test_epoch_size", type=int, default=50000,
help="Number of test images")
parser.add_argument("--db_type", type=str, default="lmdb",
help="Database type (such as lmdb or leveldb)")
parser.add_argument("--gpus", type=str,
help="Comma separated list of GPU devices to use")
parser.add_argument("--num_gpus", type=int, default=1,
help="Number of GPU devices (instead of --gpus)")
parser.add_argument("--num_channels", type=int, default=3,
help="Number of color channels")
parser.add_argument("--image_size", type=int, default=224,
help="Input image size (to crop to)")
parser.add_argument("--num_labels", type=int, default=1000,
help="Number of labels")
parser.add_argument("--batch_size", type=int, default=32,
help="Batch size, total over all GPUs")
parser.add_argument("--epoch_size", type=int, default=1500000,
help="Number of images/epoch, total over all machines")
parser.add_argument("--num_epochs", type=int, default=1000,
help="Num epochs.")
parser.add_argument("--base_learning_rate", type=float, default=0.1,
help="Initial learning rate.")
parser.add_argument("--weight_decay", type=float, default=1e-4,
help="Weight decay (L2 regularization)")
parser.add_argument("--cudnn_workspace_limit_mb", type=int, default=64,
help="CuDNN workspace limit in MBs")
parser.add_argument("--num_shards", type=int, default=1,
help="Number of machines in distributed run")
parser.add_argument("--shard_id", type=int, default=0,
help="Shard id.")
parser.add_argument("--run_id", type=str,
help="Unique run identifier (e.g. uuid)")
parser.add_argument("--redis_host", type=str,
help="Host of Redis server (for rendezvous)")
parser.add_argument("--redis_port", type=int, default=6379,
help="Port of Redis server (for rendezvous)")
parser.add_argument("--file_store_path", type=str, default="/tmp",
help="Path to directory to use for rendezvous")
parser.add_argument("--save_model_name", type=str, default="resnext_model",
help="Save the trained model to a given name")
parser.add_argument("--load_model_path", type=str, default=None,
help="Load previously saved model to continue training")
parser.add_argument("--use_cpu", action="store_true",
help="Use CPU instead of GPU")
parser.add_argument("--use_nccl", action="store_true",
help="Use nccl for inter-GPU collectives")
parser.add_argument("--use_ideep", type=bool, default=False,
help="Use ideep")
parser.add_argument('--dtype', default='float',
choices=['float', 'float16'],
help='Data type used for training')
parser.add_argument('--float16_compute', action='store_true',
help="Use float 16 compute, if available")
parser.add_argument('--enable_tensor_core', action='store_true',
help='Enable Tensor Core math for Conv and FC ops')
parser.add_argument("--distributed_transport", type=str, default="tcp",
help="Transport to use for distributed run [tcp|ibverbs]")
parser.add_argument("--distributed_interfaces", type=str, default="",
help="Network interfaces to use for distributed run")
parser.add_argument("--first_iter_timeout", type=int, default=1200,
help="Timeout (secs) of the first iteration "
"(default: %(default)s)")
parser.add_argument("--timeout", type=int, default=60,
help="Timeout (secs) of each (except the first) iteration "
"(default: %(default)s)")
parser.add_argument("--model",
default="resnext", const="resnext", nargs="?",
choices=["shufflenet", "resnext"],
help="List of models which can be run")
args = parser.parse_args()
Train(args)
if __name__ == '__main__':
workspace.GlobalInit(['caffe2', '--caffe2_log_level=2'])
main()
|