File: algebra.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (48 lines) | stat: -rw-r--r-- 1,296 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
## @package algebra
# Module caffe2.python.helpers.algebra






def transpose(model, blob_in, blob_out, use_cudnn=False, **kwargs):
    """Transpose."""
    if use_cudnn:
        kwargs['engine'] = 'CUDNN'
    return model.net.Transpose(blob_in, blob_out, **kwargs)


def sum(model, blob_in, blob_out, **kwargs):
    """Sum"""
    return model.net.Sum(blob_in, blob_out, **kwargs)


def reduce_sum(model, blob_in, blob_out, **kwargs):
    """ReduceSum"""
    return model.net.ReduceSum(blob_in, blob_out, **kwargs)


def sub(model, blob_in, blob_out, **kwargs):
    """Subtract"""
    return model.net.Sub(blob_in, blob_out, **kwargs)


def mat_mul(model, blob_in, blob_out, **kwargs):
    """Matrix multiplication"""
    return model.net.MatMul(blob_in, blob_out, **kwargs)


def arg_min(model, blob_in, blob_out, **kwargs):
    """ArgMin"""
    return model.net.ArgMin(blob_in, blob_out, **kwargs)

def batch_mat_mul(model, blob_in, blob_out,
                  enable_tensor_core=False, **kwargs):
    if enable_tensor_core:
        kwargs['engine'] = 'TENSORCORE'

    return model.net.BatchMatMul(blob_in, blob_out, **kwargs)

def sparse_lengths_sum_4bit_rowwise_sparse(model, blob_in, blob_out, **kwargs):
    return model.net.SparseLengthsSum4BitRowwiseSparse(blob_in, blob_out, **kwargs)