File: conv.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (362 lines) | stat: -rw-r--r-- 10,396 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
## @package conv
# Module caffe2.python.helpers.conv





from caffe2.python import core
from caffe2.python.modeling import initializers
from caffe2.python.modeling.parameter_info import ParameterTags

def _ConvBase(
    model,
    is_nd,
    blob_in,
    blob_out,
    dim_in,
    dim_out,
    kernel,
    weight_init=None,
    bias_init=None,
    WeightInitializer=None,
    BiasInitializer=None,
    group=1,
    transform_inputs=None,
    use_cudnn=False,
    order="NCHW",
    cudnn_exhaustive_search=False,
    ws_nbytes_limit=None,
    float16_compute=False,
    **kwargs
):
    kernels = []
    if is_nd:
        if not isinstance(kernel, list):
            kernels = [kernel]
        else:
            kernels = kernel
    else:
        if isinstance(kernel, list):
            assert len(kernel) == 2, "Conv support only a 2D kernel."
            kernels = kernel
        else:
            kernels = [kernel] * 2

    requested_engine = kwargs.get('engine')
    if requested_engine is not None:
        if use_cudnn and requested_engine != 'CUDNN':
            raise ValueError(
                'When use_cudnn=True, the only engine you can specify is '
                '"CUDNN"')
        elif not use_cudnn and requested_engine == 'CUDNN':
            raise ValueError(
                'When use_cudnn=False, the only engine you can specify is '
                '""')

    if use_cudnn:
        kwargs['engine'] = 'CUDNN'
        kwargs['exhaustive_search'] = cudnn_exhaustive_search
        if ws_nbytes_limit:
            kwargs['ws_nbytes_limit'] = ws_nbytes_limit

    use_bias =\
            False if ("no_bias" in kwargs and kwargs["no_bias"]) else True
    blob_out = blob_out or model.net.NextName()
    weight_shape = [dim_out]
    if order == "NCHW":
        weight_shape.append(int(dim_in / group))
        weight_shape.extend(kernels)
    else:
        weight_shape.extend(kernels)
        weight_shape.append(int(dim_in / group))

    WeightInitializer = initializers.update_initializer(
        WeightInitializer, weight_init, ("XavierFill", {})
    )
    BiasInitializer = initializers.update_initializer(
        BiasInitializer, bias_init, ("ConstantFill", {})
    )
    if not model.init_params:
        WeightInitializer = initializers.ExternalInitializer()
        BiasInitializer = initializers.ExternalInitializer()

    weight = model.create_param(
        param_name=blob_out + '_w',
        shape=weight_shape,
        initializer=WeightInitializer,
        tags=ParameterTags.WEIGHT
    )
    if use_bias:
        bias = model.create_param(
            param_name=blob_out + '_b',
            shape=[dim_out, ],
            initializer=BiasInitializer,
            tags=ParameterTags.BIAS
        )

    if use_bias:
        inputs = [blob_in, weight, bias]
    else:
        inputs = [blob_in, weight]

    if transform_inputs is not None:
        transform_inputs(model, blob_out, inputs)

    # Enable float 16 compute kernel (relevant for CUDA)
    if float16_compute:
        kwargs['float16_compute'] = True

    # For the operator, we no longer need to provide the no_bias field
    # because it can automatically figure this out from the number of
    # inputs.
    if 'no_bias' in kwargs:
        del kwargs['no_bias']
    if group != 1:
        kwargs['group'] = group
    if is_nd:
        return model.net.Conv(
            inputs,
            blob_out,
            kernels=kernels,
            order=order,
            **kwargs)
    else:
        if isinstance(kernel, list):
            return model.net.Conv(
                inputs,
                blob_out,
                kernel_h=kernel[0],
                kernel_w=kernel[1],
                order=order,
                **kwargs)
        else:
            return model.net.Conv(
                inputs,
                blob_out,
                kernel=kernel,
                order=order,
                **kwargs)



def conv_nd(
    model,
    blob_in,
    blob_out,
    dim_in,
    dim_out,
    kernel,
    weight_init=None,
    bias_init=None,
    WeightInitializer=None,
    BiasInitializer=None,
    group=1,
    transform_inputs=None,
    order="NCHW",
    **kwargs
):
    """N-dimensional convolution for inputs with NCHW storage order.
    """
    assert order == "NCHW", "ConvNd only supported for NCHW storage."
    return _ConvBase(model, True, blob_in, blob_out, dim_in, dim_out, kernel,
                     weight_init, bias_init, WeightInitializer, BiasInitializer,
                     group, transform_inputs, order=order, **kwargs)


def conv(
    model,
    blob_in,
    blob_out,
    dim_in,
    dim_out,
    kernel,
    weight_init=None,
    bias_init=None,
    WeightInitializer=None,
    BiasInitializer=None,
    group=1,
    transform_inputs=None,
    **kwargs
):
    """2-dimensional convolution.
    """
    return _ConvBase(model, False, blob_in, blob_out, dim_in, dim_out, kernel,
                     weight_init, bias_init, WeightInitializer, BiasInitializer,
                     group, transform_inputs, **kwargs)


def conv_transpose(
    model,
    blob_in,
    blob_out,
    dim_in,
    dim_out,
    kernel,
    weight_init=None,
    bias_init=None,
    use_cudnn=False,
    order="NCHW",
    cudnn_exhaustive_search=False,
    ws_nbytes_limit=None,
    **kwargs
):
    """ConvTranspose.
    """
    weight_init = weight_init if weight_init else ('XavierFill', {})
    bias_init = bias_init if bias_init else ('ConstantFill', {})
    blob_out = blob_out or model.net.NextName()
    weight_shape = (
        [dim_in, dim_out, kernel, kernel]
        if order == "NCHW" else [dim_in, kernel, kernel, dim_out]
    )
    if model.init_params:
        weight = model.param_init_net.__getattr__(weight_init[0])(
            [],
            blob_out + '_w',
            shape=weight_shape,
            **weight_init[1]
        )
        bias = model.param_init_net.__getattr__(bias_init[0])(
            [],
            blob_out + '_b',
            shape=[dim_out, ],
            **bias_init[1]
        )
    else:
        weight = core.ScopedBlobReference(
            blob_out + '_w', model.param_init_net)
        bias = core.ScopedBlobReference(
            blob_out + '_b', model.param_init_net)
    model.AddParameter(weight, ParameterTags.WEIGHT)
    model.AddParameter(bias, ParameterTags.BIAS)
    if use_cudnn:
        kwargs['engine'] = 'CUDNN'
        kwargs['exhaustive_search'] = cudnn_exhaustive_search
        if ws_nbytes_limit:
            kwargs['ws_nbytes_limit'] = ws_nbytes_limit
    return model.net.ConvTranspose(
        [blob_in, weight, bias],
        blob_out,
        kernel=kernel,
        order=order,
        **kwargs
    )


def group_conv(
    model,
    blob_in,
    blob_out,
    dim_in,
    dim_out,
    kernel,
    weight_init=None,
    bias_init=None,
    group=1,
    **kwargs
):
    """Group Convolution.

    This is essentially the same as Conv with a group argument passed in.
    We specialize this for backward interface compatibility.
    """
    return conv(model, blob_in, blob_out, dim_in, dim_out, kernel,
                weight_init=weight_init, bias_init=bias_init,
                group=group, **kwargs)


def group_conv_deprecated(
    model,
    blob_in,
    blob_out,
    dim_in,
    dim_out,
    kernel,
    weight_init=None,
    bias_init=None,
    group=1,
    use_cudnn=False,
    order="NCHW",
    cudnn_exhaustive_search=False,
    ws_nbytes_limit=None,
    **kwargs
):
    """GroupConvolution's deprecated interface.

    This is used to simulate a group convolution via split and concat. You
    should always use the new group convolution in your new code.
    """
    weight_init = weight_init if weight_init else ('XavierFill', {})
    bias_init = bias_init if bias_init else ('ConstantFill', {})
    use_bias = False if ("no_bias" in kwargs and kwargs["no_bias"]) else True
    if use_cudnn:
        kwargs['engine'] = 'CUDNN'
        kwargs['exhaustive_search'] = cudnn_exhaustive_search
        if ws_nbytes_limit:
            kwargs['ws_nbytes_limit'] = ws_nbytes_limit
            if dim_in % group:
                raise ValueError("dim_in should be divisible by group.")
    if dim_out % group:
        raise ValueError("dim_out should be divisible by group.")
    splitted_blobs = model.net.DepthSplit(
        blob_in,
        ['_' + blob_out + '_gconv_split_' + str(i) for i in range(group)],
        dimensions=[int(dim_in / group) for i in range(group)],
        order=order
    )
    weight_shape = (
        [dim_out / group, dim_in / group, kernel, kernel]
        if order == "NCHW" else
        [dim_out / group, kernel, kernel, dim_in / group]
    )
    # Make sure that the shapes are of int format. Especially for py3 where
    # int division gives float output.
    weight_shape = [int(v) for v in weight_shape]
    conv_blobs = []
    for i in range(group):
        if model.init_params:
            weight = model.param_init_net.__getattr__(weight_init[0])(
                [],
                blob_out + '_gconv_%d_w' % i,
                shape=weight_shape,
                **weight_init[1]
            )
            if use_bias:
                bias = model.param_init_net.__getattr__(bias_init[0])(
                    [],
                    blob_out + '_gconv_%d_b' % i,
                    shape=[int(dim_out / group)],
                    **bias_init[1]
                )
        else:
            weight = core.ScopedBlobReference(
                blob_out + '_gconv_%d_w' % i, model.param_init_net)
            if use_bias:
                bias = core.ScopedBlobReference(
                    blob_out + '_gconv_%d_b' % i, model.param_init_net)
        model.AddParameter(weight, ParameterTags.WEIGHT)
        if use_bias:
            model.AddParameter(bias, ParameterTags.BIAS)
        if use_bias:
            inputs = [weight, bias]
        else:
            inputs = [weight]
        if 'no_bias' in kwargs:
            del kwargs['no_bias']
        conv_blobs.append(
            splitted_blobs[i].Conv(
                inputs,
                blob_out + '_gconv_%d' % i,
                kernel=kernel,
                order=order,
                **kwargs
            )
        )
    concat, concat_dims = model.net.Concat(
        conv_blobs,
        [blob_out,
         "_" + blob_out + "_concat_dims"],
        order=order
    )
    return concat