1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
## @package fc
# Module caffe2.python.helpers.fc
from caffe2.python import core
from caffe2.python.modeling import initializers
from caffe2.python.modeling.parameter_info import ParameterTags
def _FC_or_packed_FC(
model, op_call, blob_in, blob_out, dim_in, dim_out, weight_init=None,
bias_init=None, WeightInitializer=None, BiasInitializer=None,
enable_tensor_core=False, float16_compute=False, **kwargs
):
WeightInitializer = initializers.update_initializer(
WeightInitializer, weight_init, ("XavierFill", {})
)
BiasInitializer = initializers.update_initializer(
BiasInitializer, bias_init, ("ConstantFill", {})
)
if not model.init_params:
WeightInitializer = initializers.ExternalInitializer()
BiasInitializer = initializers.ExternalInitializer()
blob_out = blob_out or model.net.NextName()
bias_tags = [ParameterTags.BIAS]
if 'freeze_bias' in kwargs:
bias_tags.append(ParameterTags.COMPUTED_PARAM)
weight = model.create_param(
param_name=blob_out + '_w',
shape=[dim_out, dim_in],
initializer=WeightInitializer,
tags=ParameterTags.WEIGHT
)
bias = model.create_param(
param_name=blob_out + '_b',
shape=[dim_out, ],
initializer=BiasInitializer,
tags=bias_tags
)
# enable TensorCore by setting appropriate engine
if enable_tensor_core:
kwargs['engine'] = 'TENSORCORE'
# Enable float 16 compute kernel (relevant for CUDA)
if float16_compute:
kwargs['float16_compute'] = True
return op_call([blob_in, weight, bias], blob_out, **kwargs)
def fc(model, *args, **kwargs):
return _FC_or_packed_FC(model, model.net.FC, *args, **kwargs)
def packed_fc(model, *args, **kwargs):
return _FC_or_packed_FC(model, model.net.PackedFC, *args, **kwargs)
def fc_decomp(
model, blob_in, blob_out, dim_in, dim_out,
rank_approx=5, weight_init=None, bias_init=None,
WeightInitializer=None, BiasInitializer=None, **kwargs
):
"""FC_Decomp version
Here we assume that the rank of original input is bigger than 5.
"""
WeightInitializer = initializers.update_initializer(
WeightInitializer, weight_init, ("XavierFill", {})
)
BiasInitializer = initializers.update_initializer(
BiasInitializer, bias_init, ("ConstantFill", {})
)
blob_out = blob_out or model.net.NextName()
u = model.create_param(
param_name=blob_out + '_u',
shape=[dim_out, rank_approx],
initializer=WeightInitializer,
)
v = model.create_param(
param_name=blob_out + '_v',
shape=[dim_in, rank_approx],
initializer=WeightInitializer,
)
bias = model.create_param(
param_name=blob_out + '_b',
shape=[dim_out, ],
initializer=BiasInitializer,
)
return model.net.FC_Decomp([blob_in, u, v, bias], blob_out, **kwargs)
def fc_prune(
model, blob_in, blob_out, dim_in, dim_out,
weight_init=None, bias_init=None, mask_init=None,
threshold=0.00001, need_compress_rate=False,
comp_lb=0.05,
**kwargs
):
"""FC_Prune version
Runnable so far. Great!:)
"""
weight_init = weight_init if weight_init else ('XavierFill', {})
bias_init = bias_init if bias_init else ('ConstantFill', {})
mask_init = mask_init if mask_init else ('ConstantFill', {})
blob_out = blob_out or model.net.NextName()
compress_rate = blob_out + '_compress_rate'
if model.init_params:
compress_lb = model.param_init_net.ConstantFill(
[],
blob_out + '_lb',
shape=[1],
value=comp_lb
)
weight = model.param_init_net.__getattr__(weight_init[0])(
[],
blob_out + '_w',
shape=[dim_out, dim_in],
**weight_init[1]
)
mask = model.param_init_net.ConstantFill(
[],
blob_out + '_m',
shape=[dim_out, dim_in],
value=1.0
)
ag_dw = model.param_init_net.__getattr__(mask_init[0])(
[],
blob_out + '_ag_dw',
shape=[dim_out, dim_in],
**mask_init[1]
)
bias = model.param_init_net.__getattr__(bias_init[0])(
[],
blob_out + '_b',
shape=[dim_out, ],
**bias_init[1]
)
mask_seq = model.param_init_net.__getattr__(mask_init[0])(
[],
blob_out + '_mask_seq',
shape=[dim_out, dim_in],
**mask_init[1]
)
thres = model.param_init_net.ConstantFill(
[],
blob_out + '_thres',
shape=[1],
value=threshold
)
else:
compress_lb = core.ScopedBlobReference(
blob_out + '_lb', model.param_init_net)
weight = core.ScopedBlobReference(
blob_out + '_w', model.param_init_net)
bias = core.ScopedBlobReference(
blob_out + '_b', model.param_init_net)
mask = core.ScopedBlobReference(
blob_out + '_m', model.param_init_net)
ag_dw = core.ScopedBlobReference(
blob_out + '_ag_dw', model.param_init_net)
mask_seq = core.ScopedBlobReference(
blob_out + '_mask_seq', model.param_init_net)
thres = core.ScopedBlobReference(
blob_out + '_thres', model.param_init_net)
model.AddParameter(weight)
model.AddParameter(bias)
if need_compress_rate:
return model.net.FC_Prune([blob_in, weight, mask, bias, ag_dw, mask_seq,
thres, compress_lb],
[blob_out, compress_rate], **kwargs)
else:
return model.net.FC_Prune([blob_in, weight, mask,
bias, ag_dw, mask_seq,
thres, compress_lb],
blob_out, **kwargs)
def fc_sparse(
model, blob_in, blob_out, w_csr, iw, jw, bias,
**kwargs
):
"""FC_Sparse: Only takes in allocated weights"""
if not (w_csr and iw and jw and bias):
print("Warning...")
model.AddParameter(w_csr)
model.AddParameter(iw)
model.AddParameter(jw)
model.AddParameter(bias)
return model.net.FC_Sparse([blob_in, w_csr, iw, jw, bias],
blob_out, **kwargs)
|