File: fc.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (197 lines) | stat: -rw-r--r-- 6,405 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
## @package fc
# Module caffe2.python.helpers.fc





from caffe2.python import core
from caffe2.python.modeling import initializers
from caffe2.python.modeling.parameter_info import ParameterTags


def _FC_or_packed_FC(
    model, op_call, blob_in, blob_out, dim_in, dim_out, weight_init=None,
        bias_init=None, WeightInitializer=None, BiasInitializer=None,
        enable_tensor_core=False, float16_compute=False, **kwargs
):
    WeightInitializer = initializers.update_initializer(
        WeightInitializer, weight_init, ("XavierFill", {})
    )
    BiasInitializer = initializers.update_initializer(
        BiasInitializer, bias_init, ("ConstantFill", {})
    )
    if not model.init_params:
        WeightInitializer = initializers.ExternalInitializer()
        BiasInitializer = initializers.ExternalInitializer()

    blob_out = blob_out or model.net.NextName()
    bias_tags = [ParameterTags.BIAS]
    if 'freeze_bias' in kwargs:
        bias_tags.append(ParameterTags.COMPUTED_PARAM)

    weight = model.create_param(
        param_name=blob_out + '_w',
        shape=[dim_out, dim_in],
        initializer=WeightInitializer,
        tags=ParameterTags.WEIGHT
    )
    bias = model.create_param(
        param_name=blob_out + '_b',
        shape=[dim_out, ],
        initializer=BiasInitializer,
        tags=bias_tags
    )

    # enable TensorCore by setting appropriate engine
    if enable_tensor_core:
        kwargs['engine'] = 'TENSORCORE'

    # Enable float 16 compute kernel (relevant for CUDA)
    if float16_compute:
        kwargs['float16_compute'] = True

    return op_call([blob_in, weight, bias], blob_out, **kwargs)


def fc(model, *args, **kwargs):
    return _FC_or_packed_FC(model, model.net.FC, *args, **kwargs)


def packed_fc(model, *args, **kwargs):
    return _FC_or_packed_FC(model, model.net.PackedFC, *args, **kwargs)


def fc_decomp(
    model, blob_in, blob_out, dim_in, dim_out,
    rank_approx=5, weight_init=None, bias_init=None,
    WeightInitializer=None, BiasInitializer=None, **kwargs
):
    """FC_Decomp version
    Here we assume that the rank of original input is bigger than 5.
    """
    WeightInitializer = initializers.update_initializer(
        WeightInitializer, weight_init, ("XavierFill", {})
    )
    BiasInitializer = initializers.update_initializer(
        BiasInitializer, bias_init, ("ConstantFill", {})
    )
    blob_out = blob_out or model.net.NextName()
    u = model.create_param(
        param_name=blob_out + '_u',
        shape=[dim_out, rank_approx],
        initializer=WeightInitializer,
    )
    v = model.create_param(
        param_name=blob_out + '_v',
        shape=[dim_in, rank_approx],
        initializer=WeightInitializer,
    )
    bias = model.create_param(
        param_name=blob_out + '_b',
        shape=[dim_out, ],
        initializer=BiasInitializer,
    )
    return model.net.FC_Decomp([blob_in, u, v, bias], blob_out, **kwargs)


def fc_prune(
    model, blob_in, blob_out, dim_in, dim_out,
    weight_init=None, bias_init=None, mask_init=None,
    threshold=0.00001, need_compress_rate=False,
    comp_lb=0.05,
    **kwargs
):
    """FC_Prune version
    Runnable so far. Great!:)
    """
    weight_init = weight_init if weight_init else ('XavierFill', {})
    bias_init = bias_init if bias_init else ('ConstantFill', {})
    mask_init = mask_init if mask_init else ('ConstantFill', {})
    blob_out = blob_out or model.net.NextName()
    compress_rate = blob_out + '_compress_rate'
    if model.init_params:
        compress_lb = model.param_init_net.ConstantFill(
            [],
            blob_out + '_lb',
            shape=[1],
            value=comp_lb
        )
        weight = model.param_init_net.__getattr__(weight_init[0])(
            [],
            blob_out + '_w',
            shape=[dim_out, dim_in],
            **weight_init[1]
        )
        mask = model.param_init_net.ConstantFill(
            [],
            blob_out + '_m',
            shape=[dim_out, dim_in],
            value=1.0
        )
        ag_dw = model.param_init_net.__getattr__(mask_init[0])(
            [],
            blob_out + '_ag_dw',
            shape=[dim_out, dim_in],
            **mask_init[1]
        )
        bias = model.param_init_net.__getattr__(bias_init[0])(
            [],
            blob_out + '_b',
            shape=[dim_out, ],
            **bias_init[1]
        )
        mask_seq = model.param_init_net.__getattr__(mask_init[0])(
            [],
            blob_out + '_mask_seq',
            shape=[dim_out, dim_in],
            **mask_init[1]
        )
        thres = model.param_init_net.ConstantFill(
            [],
            blob_out + '_thres',
            shape=[1],
            value=threshold
        )
    else:
        compress_lb = core.ScopedBlobReference(
            blob_out + '_lb', model.param_init_net)
        weight = core.ScopedBlobReference(
            blob_out + '_w', model.param_init_net)
        bias = core.ScopedBlobReference(
            blob_out + '_b', model.param_init_net)
        mask = core.ScopedBlobReference(
            blob_out + '_m', model.param_init_net)
        ag_dw = core.ScopedBlobReference(
            blob_out + '_ag_dw', model.param_init_net)
        mask_seq = core.ScopedBlobReference(
            blob_out + '_mask_seq', model.param_init_net)
        thres = core.ScopedBlobReference(
            blob_out + '_thres', model.param_init_net)

    model.AddParameter(weight)
    model.AddParameter(bias)
    if need_compress_rate:
        return model.net.FC_Prune([blob_in, weight, mask, bias, ag_dw, mask_seq,
                                   thres, compress_lb],
                                  [blob_out, compress_rate], **kwargs)
    else:
        return model.net.FC_Prune([blob_in, weight, mask,
                                   bias, ag_dw, mask_seq,
                                   thres, compress_lb],
                                  blob_out, **kwargs)


def fc_sparse(
    model, blob_in, blob_out, w_csr, iw, jw, bias,
    **kwargs
):
    """FC_Sparse: Only takes in allocated weights"""
    if not (w_csr and iw and jw and bias):
        print("Warning...")
    model.AddParameter(w_csr)
    model.AddParameter(iw)
    model.AddParameter(jw)
    model.AddParameter(bias)
    return model.net.FC_Sparse([blob_in, w_csr, iw, jw, bias],
                               blob_out, **kwargs)