File: normalization.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (322 lines) | stat: -rw-r--r-- 10,891 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
## @package normalization
# Module caffe2.python.helpers.normalization





from caffe2.python import scope
from caffe2.python.modeling.parameter_info import ParameterTags
from caffe2.proto import caffe2_pb2
from caffe2.python.modeling import initializers


def lrn(model, blob_in, blob_out, order="NCHW", use_cudnn=False, **kwargs):
    """LRN"""
    dev = kwargs['device_option'] if 'device_option' in kwargs \
        else scope.CurrentDeviceScope()
    is_cpu = dev is None or dev.device_type == caffe2_pb2.CPU
    if use_cudnn and (not is_cpu):
        kwargs['engine'] = 'CUDNN'
        blobs_out = blob_out
    else:
        blobs_out = [blob_out, "_" + blob_out + "_scale"]
    lrn = model.net.LRN(
        blob_in,
        blobs_out,
        order=order,
        **kwargs
    )

    if use_cudnn and (not is_cpu):
        return lrn
    else:
        return lrn[0]


def softmax(model, blob_in, blob_out=None, use_cudnn=False, **kwargs):
    """Softmax."""
    if use_cudnn:
        kwargs['engine'] = 'CUDNN'
    if blob_out is not None:
        return model.net.Softmax(blob_in, blob_out, **kwargs)
    else:
        return model.net.Softmax(blob_in, **kwargs)


def instance_norm(model, blob_in, blob_out, dim_in, order="NCHW", **kwargs):
    blob_out = blob_out or model.net.NextName()
    # Input: input, scale, bias
    # Output: output, saved_mean, saved_inv_std
    # scale: initialize with ones
    # bias: initialize with zeros

    def init_blob(value, suffix):
        return model.param_init_net.ConstantFill(
            [], blob_out + "_" + suffix, shape=[dim_in], value=value)
    scale, bias = init_blob(1.0, "s"), init_blob(0.0, "b")

    model.AddParameter(scale, ParameterTags.WEIGHT)
    model.AddParameter(bias, ParameterTags.BIAS)
    blob_outs = [blob_out, blob_out + "_sm", blob_out + "_siv"]
    if 'is_test' in kwargs and kwargs['is_test']:
        blob_outputs = model.net.InstanceNorm(
            [blob_in, scale, bias], [blob_out],
            order=order, **kwargs)
        return blob_outputs
    else:
        blob_outputs = model.net.InstanceNorm(
            [blob_in, scale, bias], blob_outs,
            order=order, **kwargs)
        # Return the output
        return blob_outputs[0]


def spatial_bn(model, blob_in, blob_out, dim_in,
               init_scale=1., init_bias=0.,
               ScaleInitializer=None, BiasInitializer=None,
               RunningMeanInitializer=None, RunningVarianceInitializer=None,
               order="NCHW", **kwargs):
    blob_out = blob_out or model.net.NextName()
    # Input: input, scale, bias, est_mean, est_inv_var
    # Output: output, running_mean, running_inv_var, saved_mean,
    #         saved_inv_var
    # scale: initialize with init_scale (default 1.)
    # bias: initialize with init_bias (default 0.)
    # est mean: zero
    # est var: ones

    if model.init_params:
        scale_init = ("ConstantFill", {'value': init_scale})
        bias_init = ("ConstantFill", {'value': init_bias})
        rm_init = ("ConstantFill", {'value': 0.0})
        riv_init = ("ConstantFill", {'value': 1.0})

        ScaleInitializer = initializers.update_initializer(
            ScaleInitializer, scale_init, ("ConstantFill", {})
        )
        BiasInitializer = initializers.update_initializer(
            BiasInitializer, bias_init, ("ConstantFill", {})
        )
        RunningMeanInitializer = initializers.update_initializer(
            RunningMeanInitializer, rm_init, ("ConstantFill", {})
        )
        RunningVarianceInitializer = initializers.update_initializer(
            RunningVarianceInitializer, riv_init, ("ConstantFill", {})
        )
    else:
        ScaleInitializer = initializers.ExternalInitializer()
        BiasInitializer = initializers.ExternalInitializer()
        RunningMeanInitializer = initializers.ExternalInitializer()
        RunningVarianceInitializer = initializers.ExternalInitializer()

    scale = model.create_param(
        param_name=blob_out + '_s',
        shape=[dim_in],
        initializer=ScaleInitializer,
        tags=ParameterTags.WEIGHT
    )

    bias = model.create_param(
        param_name=blob_out + '_b',
        shape=[dim_in],
        initializer=BiasInitializer,
        tags=ParameterTags.BIAS
    )

    running_mean = model.create_param(
        param_name=blob_out + '_rm',
        shape=[dim_in],
        initializer=RunningMeanInitializer,
        tags=ParameterTags.COMPUTED_PARAM
    )

    running_inv_var = model.create_param(
        param_name=blob_out + '_riv',
        shape=[dim_in],
        initializer=RunningVarianceInitializer,
        tags=ParameterTags.COMPUTED_PARAM
    )

    blob_outs = [blob_out, running_mean, running_inv_var,
                 blob_out + "_sm", blob_out + "_siv"]
    if 'is_test' in kwargs and kwargs['is_test']:
        blob_outputs = model.net.SpatialBN(
            [blob_in, scale, bias, blob_outs[1], blob_outs[2]], [blob_out],
            order=order, **kwargs)
        return blob_outputs
    else:
        blob_outputs = model.net.SpatialBN(
            [blob_in, scale, bias, blob_outs[1], blob_outs[2]], blob_outs,
            order=order, **kwargs)
        # Return the output
        return blob_outputs[0]


def spatial_gn(model, blob_in, blob_out, dim_in,
               init_scale=1., init_bias=0.,
               ScaleInitializer=None, BiasInitializer=None,
               RunningMeanInitializer=None, RunningVarianceInitializer=None,
               order="NCHW", **kwargs):
    '''
    Group normalizes the input, cf. https://arxiv.org/abs/1803.08494.
    '''

    blob_out = blob_out or model.net.NextName()
    # Input: input, scale, bias
    # Output: output, group_mean, group_inv_std
    # scale: initialize with init_scale (default 1.)
    # [recommendation: set init_scale = 0. in the last layer for each res block]
    # bias: initialize with init_bias (default 0.)

    if model.init_params:
        scale_init = ("ConstantFill", {'value': init_scale})
        bias_init = ("ConstantFill", {'value': init_bias})

        ScaleInitializer = initializers.update_initializer(
            ScaleInitializer, scale_init, ("ConstantFill", {})
        )
        BiasInitializer = initializers.update_initializer(
            BiasInitializer, bias_init, ("ConstantFill", {})
        )
    else:
        ScaleInitializer = initializers.ExternalInitializer()
        BiasInitializer = initializers.ExternalInitializer()

    scale = model.create_param(
        param_name=blob_out + '_s',
        shape=[dim_in],
        initializer=ScaleInitializer,
        tags=ParameterTags.WEIGHT
    )

    bias = model.create_param(
        param_name=blob_out + '_b',
        shape=[dim_in],
        initializer=BiasInitializer,
        tags=ParameterTags.BIAS
    )

    blob_outs = [blob_out,
                 blob_out + "_mean", blob_out + "_std"]

    blob_outputs = model.net.GroupNorm(
        [blob_in, scale, bias],
        blob_outs,
        **kwargs)
    # Return the output
    return blob_outputs[0]


def layer_norm(
    model,
    blob_in,
    blob_out,
    dim_in,
    axis=1,
    epsilon=1e-4,
    initial_scale=1.0,
    initial_bias=0.0,
):
    '''
    Layer normalizes the input, cf. https://arxiv.org/pdf/1607.06450.pdf.

    Args:
        blob_in: The input blob to layer normalize.
        blob_out: The layer normalized output blob.
        dim_in: The dimension of the scale and bias. For example, if blob_in is
            a 2D design matrix and axis is 1, this would be the number of
            columns.
        axis: (optional) The axis to normalize. Typically the feature axis.
            Defaults to 1.
        epsilon: (optional) A small value used for numerical stability in
            calculation. Defaults to 1e-4.
        initial_scale: (optional) The initial value for the learned scale
            parameter. Defaults to 1.0
        initial_bias: (optional) The initial value for the learned bias
            parameter of the layerwise standard deviation. Defaults to 0.0.

    Returns:
        A 3-tuple consisting of:
            - The layer normalized input blob.
            - The mean of the input blob across the given axis.
            - The standard deviation of the input blob acress the given axis.
    '''

    # The learned multiplicative scale or "gain".
    scale = model.create_param(
        param_name='{}_scale'.format(blob_out),
        shape=[dim_in] if isinstance(dim_in, int) else dim_in,
        initializer=initializers.Initializer(
            'ConstantFill',
            value=initial_scale,
        ),
        tags=ParameterTags.WEIGHT,
    )

    # The learned additive bias or "shift".
    bias = model.create_param(
        param_name='{}_bias'.format(blob_out),
        shape=[dim_in] if isinstance(dim_in, int) else dim_in,
        initializer=initializers.Initializer(
            'ConstantFill',
            value=initial_bias,
        ),
        tags=ParameterTags.BIAS,
    )

    normalized, mean, std = model.net.LayerNorm(
        [blob_in, scale, bias],
        [blob_out, blob_out + "_mean", blob_out + "_std"],
        axis=axis,
        epsilon=epsilon,
        elementwise_affine=True,
    )

    return normalized, mean, std

def moments_with_running_stats(model, blob_in, blob_out, dim_in,
                                     RunningMeanInitializer=None, RunningVarianceInitializer=None,
                                     order="NCHW", **kwargs):

    if model.init_params:
        rm_init = ("ConstantFill", {'value': 0.0})
        riv_init = ("ConstantFill", {'value': 1.0})

        RunningMeanInitializer = initializers.update_initializer(
            RunningMeanInitializer, rm_init, ("ConstantFill", {})
        )
        RunningVarianceInitializer = initializers.update_initializer(
            RunningVarianceInitializer, riv_init, ("ConstantFill", {})
        )
    else:
        RunningMeanInitializer = initializers.ExternalInitializer()
        RunningVarianceInitializer = initializers.ExternalInitializer()

    running_mean = model.create_param(
        param_name=blob_out + '_rm',
        shape=[dim_in],
        initializer=RunningMeanInitializer,
        tags=ParameterTags.COMPUTED_PARAM
    )

    # this is just running variance
    running_inv_var = model.create_param(
        param_name=blob_out + '_riv',
        shape=[dim_in],
        initializer=RunningVarianceInitializer,
        tags=ParameterTags.COMPUTED_PARAM
    )

    blob_outs = [blob_out + "_sm", blob_out + "_sv"]
    if order == 'NCHW':
        blob_outputs = model.net.Moments(
            [blob_in], blob_outs,
            axes=[0, 2, 3],
            order=order, keepdims=False, **kwargs)
    elif order == 'NHWC':
        blob_outputs = model.net.Moments(
            [blob_in], blob_outs,
            axes=[0, 1, 2],
            order=order, keepdims=False, **kwargs)
    return blob_outputs