1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
## @package normalization
# Module caffe2.python.helpers.normalization
from caffe2.python import scope
from caffe2.python.modeling.parameter_info import ParameterTags
from caffe2.proto import caffe2_pb2
from caffe2.python.modeling import initializers
def lrn(model, blob_in, blob_out, order="NCHW", use_cudnn=False, **kwargs):
"""LRN"""
dev = kwargs['device_option'] if 'device_option' in kwargs \
else scope.CurrentDeviceScope()
is_cpu = dev is None or dev.device_type == caffe2_pb2.CPU
if use_cudnn and (not is_cpu):
kwargs['engine'] = 'CUDNN'
blobs_out = blob_out
else:
blobs_out = [blob_out, "_" + blob_out + "_scale"]
lrn = model.net.LRN(
blob_in,
blobs_out,
order=order,
**kwargs
)
if use_cudnn and (not is_cpu):
return lrn
else:
return lrn[0]
def softmax(model, blob_in, blob_out=None, use_cudnn=False, **kwargs):
"""Softmax."""
if use_cudnn:
kwargs['engine'] = 'CUDNN'
if blob_out is not None:
return model.net.Softmax(blob_in, blob_out, **kwargs)
else:
return model.net.Softmax(blob_in, **kwargs)
def instance_norm(model, blob_in, blob_out, dim_in, order="NCHW", **kwargs):
blob_out = blob_out or model.net.NextName()
# Input: input, scale, bias
# Output: output, saved_mean, saved_inv_std
# scale: initialize with ones
# bias: initialize with zeros
def init_blob(value, suffix):
return model.param_init_net.ConstantFill(
[], blob_out + "_" + suffix, shape=[dim_in], value=value)
scale, bias = init_blob(1.0, "s"), init_blob(0.0, "b")
model.AddParameter(scale, ParameterTags.WEIGHT)
model.AddParameter(bias, ParameterTags.BIAS)
blob_outs = [blob_out, blob_out + "_sm", blob_out + "_siv"]
if 'is_test' in kwargs and kwargs['is_test']:
blob_outputs = model.net.InstanceNorm(
[blob_in, scale, bias], [blob_out],
order=order, **kwargs)
return blob_outputs
else:
blob_outputs = model.net.InstanceNorm(
[blob_in, scale, bias], blob_outs,
order=order, **kwargs)
# Return the output
return blob_outputs[0]
def spatial_bn(model, blob_in, blob_out, dim_in,
init_scale=1., init_bias=0.,
ScaleInitializer=None, BiasInitializer=None,
RunningMeanInitializer=None, RunningVarianceInitializer=None,
order="NCHW", **kwargs):
blob_out = blob_out or model.net.NextName()
# Input: input, scale, bias, est_mean, est_inv_var
# Output: output, running_mean, running_inv_var, saved_mean,
# saved_inv_var
# scale: initialize with init_scale (default 1.)
# bias: initialize with init_bias (default 0.)
# est mean: zero
# est var: ones
if model.init_params:
scale_init = ("ConstantFill", {'value': init_scale})
bias_init = ("ConstantFill", {'value': init_bias})
rm_init = ("ConstantFill", {'value': 0.0})
riv_init = ("ConstantFill", {'value': 1.0})
ScaleInitializer = initializers.update_initializer(
ScaleInitializer, scale_init, ("ConstantFill", {})
)
BiasInitializer = initializers.update_initializer(
BiasInitializer, bias_init, ("ConstantFill", {})
)
RunningMeanInitializer = initializers.update_initializer(
RunningMeanInitializer, rm_init, ("ConstantFill", {})
)
RunningVarianceInitializer = initializers.update_initializer(
RunningVarianceInitializer, riv_init, ("ConstantFill", {})
)
else:
ScaleInitializer = initializers.ExternalInitializer()
BiasInitializer = initializers.ExternalInitializer()
RunningMeanInitializer = initializers.ExternalInitializer()
RunningVarianceInitializer = initializers.ExternalInitializer()
scale = model.create_param(
param_name=blob_out + '_s',
shape=[dim_in],
initializer=ScaleInitializer,
tags=ParameterTags.WEIGHT
)
bias = model.create_param(
param_name=blob_out + '_b',
shape=[dim_in],
initializer=BiasInitializer,
tags=ParameterTags.BIAS
)
running_mean = model.create_param(
param_name=blob_out + '_rm',
shape=[dim_in],
initializer=RunningMeanInitializer,
tags=ParameterTags.COMPUTED_PARAM
)
running_inv_var = model.create_param(
param_name=blob_out + '_riv',
shape=[dim_in],
initializer=RunningVarianceInitializer,
tags=ParameterTags.COMPUTED_PARAM
)
blob_outs = [blob_out, running_mean, running_inv_var,
blob_out + "_sm", blob_out + "_siv"]
if 'is_test' in kwargs and kwargs['is_test']:
blob_outputs = model.net.SpatialBN(
[blob_in, scale, bias, blob_outs[1], blob_outs[2]], [blob_out],
order=order, **kwargs)
return blob_outputs
else:
blob_outputs = model.net.SpatialBN(
[blob_in, scale, bias, blob_outs[1], blob_outs[2]], blob_outs,
order=order, **kwargs)
# Return the output
return blob_outputs[0]
def spatial_gn(model, blob_in, blob_out, dim_in,
init_scale=1., init_bias=0.,
ScaleInitializer=None, BiasInitializer=None,
RunningMeanInitializer=None, RunningVarianceInitializer=None,
order="NCHW", **kwargs):
'''
Group normalizes the input, cf. https://arxiv.org/abs/1803.08494.
'''
blob_out = blob_out or model.net.NextName()
# Input: input, scale, bias
# Output: output, group_mean, group_inv_std
# scale: initialize with init_scale (default 1.)
# [recommendation: set init_scale = 0. in the last layer for each res block]
# bias: initialize with init_bias (default 0.)
if model.init_params:
scale_init = ("ConstantFill", {'value': init_scale})
bias_init = ("ConstantFill", {'value': init_bias})
ScaleInitializer = initializers.update_initializer(
ScaleInitializer, scale_init, ("ConstantFill", {})
)
BiasInitializer = initializers.update_initializer(
BiasInitializer, bias_init, ("ConstantFill", {})
)
else:
ScaleInitializer = initializers.ExternalInitializer()
BiasInitializer = initializers.ExternalInitializer()
scale = model.create_param(
param_name=blob_out + '_s',
shape=[dim_in],
initializer=ScaleInitializer,
tags=ParameterTags.WEIGHT
)
bias = model.create_param(
param_name=blob_out + '_b',
shape=[dim_in],
initializer=BiasInitializer,
tags=ParameterTags.BIAS
)
blob_outs = [blob_out,
blob_out + "_mean", blob_out + "_std"]
blob_outputs = model.net.GroupNorm(
[blob_in, scale, bias],
blob_outs,
**kwargs)
# Return the output
return blob_outputs[0]
def layer_norm(
model,
blob_in,
blob_out,
dim_in,
axis=1,
epsilon=1e-4,
initial_scale=1.0,
initial_bias=0.0,
):
'''
Layer normalizes the input, cf. https://arxiv.org/pdf/1607.06450.pdf.
Args:
blob_in: The input blob to layer normalize.
blob_out: The layer normalized output blob.
dim_in: The dimension of the scale and bias. For example, if blob_in is
a 2D design matrix and axis is 1, this would be the number of
columns.
axis: (optional) The axis to normalize. Typically the feature axis.
Defaults to 1.
epsilon: (optional) A small value used for numerical stability in
calculation. Defaults to 1e-4.
initial_scale: (optional) The initial value for the learned scale
parameter. Defaults to 1.0
initial_bias: (optional) The initial value for the learned bias
parameter of the layerwise standard deviation. Defaults to 0.0.
Returns:
A 3-tuple consisting of:
- The layer normalized input blob.
- The mean of the input blob across the given axis.
- The standard deviation of the input blob acress the given axis.
'''
# The learned multiplicative scale or "gain".
scale = model.create_param(
param_name='{}_scale'.format(blob_out),
shape=[dim_in] if isinstance(dim_in, int) else dim_in,
initializer=initializers.Initializer(
'ConstantFill',
value=initial_scale,
),
tags=ParameterTags.WEIGHT,
)
# The learned additive bias or "shift".
bias = model.create_param(
param_name='{}_bias'.format(blob_out),
shape=[dim_in] if isinstance(dim_in, int) else dim_in,
initializer=initializers.Initializer(
'ConstantFill',
value=initial_bias,
),
tags=ParameterTags.BIAS,
)
normalized, mean, std = model.net.LayerNorm(
[blob_in, scale, bias],
[blob_out, blob_out + "_mean", blob_out + "_std"],
axis=axis,
epsilon=epsilon,
elementwise_affine=True,
)
return normalized, mean, std
def moments_with_running_stats(model, blob_in, blob_out, dim_in,
RunningMeanInitializer=None, RunningVarianceInitializer=None,
order="NCHW", **kwargs):
if model.init_params:
rm_init = ("ConstantFill", {'value': 0.0})
riv_init = ("ConstantFill", {'value': 1.0})
RunningMeanInitializer = initializers.update_initializer(
RunningMeanInitializer, rm_init, ("ConstantFill", {})
)
RunningVarianceInitializer = initializers.update_initializer(
RunningVarianceInitializer, riv_init, ("ConstantFill", {})
)
else:
RunningMeanInitializer = initializers.ExternalInitializer()
RunningVarianceInitializer = initializers.ExternalInitializer()
running_mean = model.create_param(
param_name=blob_out + '_rm',
shape=[dim_in],
initializer=RunningMeanInitializer,
tags=ParameterTags.COMPUTED_PARAM
)
# this is just running variance
running_inv_var = model.create_param(
param_name=blob_out + '_riv',
shape=[dim_in],
initializer=RunningVarianceInitializer,
tags=ParameterTags.COMPUTED_PARAM
)
blob_outs = [blob_out + "_sm", blob_out + "_sv"]
if order == 'NCHW':
blob_outputs = model.net.Moments(
[blob_in], blob_outs,
axes=[0, 2, 3],
order=order, keepdims=False, **kwargs)
elif order == 'NHWC':
blob_outputs = model.net.Moments(
[blob_in], blob_outs,
axes=[0, 1, 2],
order=order, keepdims=False, **kwargs)
return blob_outputs
|