File: tools.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (34 lines) | stat: -rw-r--r-- 1,089 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
## @package tools
# Module caffe2.python.helpers.tools






def image_input(
    model, blob_in, blob_out, order="NCHW", use_gpu_transform=False, **kwargs
):
    assert 'is_test' in kwargs, "Argument 'is_test' is required"
    if order == "NCHW":
        if (use_gpu_transform):
            kwargs['use_gpu_transform'] = 1 if use_gpu_transform else 0
            # GPU transform will handle NHWC -> NCHW
            outputs = model.net.ImageInput(blob_in, blob_out, **kwargs)
            pass
        else:
            outputs = model.net.ImageInput(
                blob_in, [blob_out[0] + '_nhwc'] + blob_out[1:], **kwargs
            )
            outputs_list = list(outputs)
            outputs_list[0] = model.net.NHWC2NCHW(outputs_list[0], blob_out[0])
            outputs = tuple(outputs_list)
    else:
        outputs = model.net.ImageInput(blob_in, blob_out, **kwargs)
    return outputs


def video_input(model, blob_in, blob_out, **kwargs):
    # size of outputs can vary depending on kwargs
    outputs = model.net.VideoInput(blob_in, blob_out, **kwargs)
    return outputs