1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
|
## @package hypothesis_test_util
# Module caffe2.python.hypothesis_test_util
"""
The Hypothesis library uses *property-based testing* to check
invariants about the code under test under a variety of random inputs.
The key idea here is to express properties of the code under test
(e.g. that it passes a gradient check, that it implements a reference
function, etc), and then generate random instances and verify they
satisfy these properties.
The main functions of interest are exposed on `HypothesisTestCase`.
You can usually just add a short function in this to generate an
arbitrary number of test cases for your operator.
The key functions are:
- `assertDeviceChecks(devices, op, inputs, outputs)`. This asserts that the
operator computes the same outputs, regardless of which device it is executed
on.
- `assertGradientChecks(device, op, inputs, output_,
outputs_with_grads)`. This implements a standard numerical gradient checker
for the operator in question.
- `assertReferenceChecks(device, op, inputs, reference)`. This runs the
reference function (effectively calling `reference(*inputs)`, and comparing
that to the output of output.
`hypothesis_test_util.py` exposes some useful pre-built samplers.
- `hu.gcs` - a gradient checker device (`gc`) and device checker devices (`dc`)
- `hu.gcs_cpu_only` - a CPU-only gradient checker device (`gc`) and
device checker devices (`dc`). Used for when your operator is only
implemented on the CPU.
"""
from caffe2.proto import caffe2_pb2
from caffe2.python import (
workspace, device_checker, gradient_checker, test_util, core)
import contextlib
import copy
import functools
import hypothesis
import hypothesis.extra.numpy
import hypothesis.strategies as st
import logging
import numpy as np
import os
import struct
def is_sandcastle():
return os.getenv('SANDCASTLE') == '1' or os.getenv('TW_JOB_USER') == 'sandcastle'
def is_travis():
return 'TRAVIS' in os.environ
def to_float32(x):
return struct.unpack("f", struct.pack("f", float(x)))[0]
# "min_satisfying_examples" setting has been deprecated in hypothesis
# 3.56.0 and removed in hypothesis 4.x
def settings(*args, **kwargs):
if 'min_satisfying_examples' in kwargs and hypothesis.version.__version_info__ >= (3, 56, 0):
kwargs.pop('min_satisfying_examples')
if 'deadline' in kwargs and hypothesis.version.__version_info__ < (4, 44, 0):
kwargs.pop('deadline')
if 'timeout' in kwargs and hypothesis.version.__version_info__ >= (4, 44, 0):
if 'deadline' not in kwargs:
kwargs['deadline'] = kwargs['timeout'] * 1e3
kwargs.pop('timeout')
return hypothesis.settings(*args, **kwargs)
# This wrapper wraps around `st.floats` and
# sets width parameters to 32 if version is newer than 3.67.0
def floats(*args, **kwargs):
width_supported = hypothesis.version.__version_info__ >= (3, 67, 0)
if 'width' in kwargs and not width_supported:
kwargs.pop('width')
if 'width' not in kwargs and width_supported:
kwargs['width'] = 32
if kwargs.get('min_value', None) is not None:
kwargs['min_value'] = to_float32(kwargs['min_value'])
if kwargs.get('max_value', None) is not None:
kwargs['max_value'] = to_float32(kwargs['max_value'])
return st.floats(*args, **kwargs)
hypothesis.settings.register_profile(
"sandcastle",
settings(
derandomize=True,
suppress_health_check=[hypothesis.HealthCheck.too_slow],
database=None,
max_examples=50,
min_satisfying_examples=1,
verbosity=hypothesis.Verbosity.verbose,
deadline=10000))
hypothesis.settings.register_profile(
"dev",
settings(
suppress_health_check=[hypothesis.HealthCheck.too_slow],
database=None,
max_examples=10,
min_satisfying_examples=1,
verbosity=hypothesis.Verbosity.verbose,
deadline=10000))
hypothesis.settings.register_profile(
"debug",
settings(
suppress_health_check=[hypothesis.HealthCheck.too_slow],
database=None,
max_examples=1000,
min_satisfying_examples=1,
verbosity=hypothesis.Verbosity.verbose,
deadline=50000))
hypothesis.settings.load_profile(
'sandcastle' if is_sandcastle() else os.getenv('CAFFE2_HYPOTHESIS_PROFILE',
'dev')
)
def dims(min_value=1, max_value=5):
return st.integers(min_value=min_value, max_value=max_value)
def elements_of_type(dtype=np.float32, filter_=None):
elems = None
if dtype is np.float16:
elems = floats(min_value=-1.0, max_value=1.0, width=16)
elif dtype is np.float32:
elems = floats(min_value=-1.0, max_value=1.0, width=32)
elif dtype is np.float64:
elems = floats(min_value=-1.0, max_value=1.0, width=64)
elif dtype is np.int32:
elems = st.integers(min_value=0, max_value=2 ** 31 - 1)
elif dtype is np.int64:
elems = st.integers(min_value=0, max_value=2 ** 63 - 1)
elif dtype is np.bool:
elems = st.booleans()
else:
raise ValueError("Unexpected dtype without elements provided")
return elems if filter_ is None else elems.filter(filter_)
def arrays(dims, dtype=np.float32, elements=None, unique=False):
if elements is None:
elements = elements_of_type(dtype)
return hypothesis.extra.numpy.arrays(
dtype,
dims,
elements=elements,
unique=unique,
)
def tensor(min_dim=1,
max_dim=4,
dtype=np.float32,
elements=None,
unique=False,
**kwargs):
dims_ = st.lists(dims(**kwargs), min_size=min_dim, max_size=max_dim)
return dims_.flatmap(
lambda dims: arrays(dims, dtype, elements, unique=unique))
def tensor1d(min_len=1, max_len=64, dtype=np.float32, elements=None):
return tensor(1, 1, dtype, elements, min_value=min_len, max_value=max_len)
def segment_ids(size, is_sorted):
if size == 0:
return st.just(np.empty(shape=[0], dtype=np.int32))
if is_sorted:
return arrays(
[size],
dtype=np.int32,
elements=st.booleans()).map(
lambda x: np.cumsum(x, dtype=np.int32) - x[0])
else:
return arrays(
[size],
dtype=np.int32,
elements=st.integers(min_value=0, max_value=2 * size))
def lengths(size, min_segments=None, max_segments=None, **kwargs):
# First generate number of boarders between segments
# Then create boarder values and add 0 and size
# By sorting and computing diff we convert them to lengths of
# possible 0 value
if min_segments is None:
min_segments = 0
if max_segments is None:
max_segments = size
assert min_segments >= 0
assert min_segments <= max_segments
if size == 0 and max_segments == 0:
return st.just(np.empty(shape=[0], dtype=np.int32))
assert max_segments > 0, "size is not 0, need at least one segment"
return st.integers(
min_value=max(min_segments - 1, 0), max_value=max_segments - 1
).flatmap(
lambda num_borders:
hypothesis.extra.numpy.arrays(
np.int32, num_borders, elements=st.integers(
min_value=0, max_value=size
)
)
).map(
lambda x: np.append(x, np.array([0, size], dtype=np.int32))
).map(sorted).map(np.diff)
def segmented_tensor(
min_dim=1,
max_dim=4,
dtype=np.float32,
is_sorted=True,
elements=None,
segment_generator=segment_ids,
allow_empty=False,
**kwargs
):
gen_empty = st.booleans() if allow_empty else st.just(False)
data_dims_ = st.lists(dims(**kwargs), min_size=min_dim, max_size=max_dim)
data_dims_ = st.tuples(
gen_empty, data_dims_
).map(lambda pair: ([0] if pair[0] else []) + pair[1])
return data_dims_.flatmap(lambda data_dims: st.tuples(
arrays(data_dims, dtype, elements),
segment_generator(data_dims[0], is_sorted=is_sorted),
))
def lengths_tensor(min_segments=None, max_segments=None, *args, **kwargs):
gen = functools.partial(
lengths, min_segments=min_segments, max_segments=max_segments)
return segmented_tensor(*args, segment_generator=gen, **kwargs)
def sparse_segmented_tensor(min_dim=1, max_dim=4, dtype=np.float32,
is_sorted=True, elements=None, allow_empty=False,
segment_generator=segment_ids, itype=np.int64,
**kwargs):
gen_empty = st.booleans() if allow_empty else st.just(False)
data_dims_ = st.lists(dims(**kwargs), min_size=min_dim, max_size=max_dim)
all_dims_ = st.tuples(gen_empty, data_dims_).flatmap(
lambda pair: st.tuples(
st.just(pair[1]),
(st.integers(min_value=1, max_value=pair[1][0]) if not pair[0]
else st.just(0)),
))
return all_dims_.flatmap(lambda dims: st.tuples(
arrays(dims[0], dtype, elements),
arrays(dims[1], dtype=itype, elements=st.integers(
min_value=0, max_value=dims[0][0] - 1)),
segment_generator(dims[1], is_sorted=is_sorted),
))
def sparse_lengths_tensor(**kwargs):
return sparse_segmented_tensor(segment_generator=lengths, **kwargs)
def tensors(n, min_dim=1, max_dim=4, dtype=np.float32, elements=None, **kwargs):
dims_ = st.lists(dims(**kwargs), min_size=min_dim, max_size=max_dim)
return dims_.flatmap(
lambda dims: st.lists(
arrays(dims, dtype, elements),
min_size=n,
max_size=n))
def tensors1d(n, min_len=1, max_len=64, dtype=np.float32, elements=None):
return tensors(
n, 1, 1, dtype, elements, min_value=min_len, max_value=max_len
)
cpu_do = caffe2_pb2.DeviceOption()
cuda_do = caffe2_pb2.DeviceOption(device_type=caffe2_pb2.CUDA)
hip_do = caffe2_pb2.DeviceOption(device_type=caffe2_pb2.HIP)
gpu_do = caffe2_pb2.DeviceOption(device_type=workspace.GpuDeviceType) # CUDA or ROCm
_cuda_do_list = ([cuda_do] if workspace.has_cuda_support else [])
_hip_do_list = ([hip_do] if workspace.has_hip_support else [])
_gpu_do_list = ([gpu_do] if workspace.has_gpu_support else [])
# (bddppq) Do not rely on this no_hip option! It's just used to
# temporarily skip some flaky tests on ROCM before it's getting more mature.
_device_options_no_hip = [cpu_do] + _cuda_do_list
device_options = _device_options_no_hip + _hip_do_list
# Include device option for each GPU
expanded_device_options = [cpu_do] + [
caffe2_pb2.DeviceOption(device_type=workspace.GpuDeviceType, device_id=i)
for i in range(workspace.NumGpuDevices())]
def device_checker_device_options():
return st.just(device_options)
def gradient_checker_device_option():
return st.sampled_from(device_options)
gcs = dict(
gc=gradient_checker_device_option(),
dc=device_checker_device_options()
)
gcs_cpu_only = dict(gc=st.sampled_from([cpu_do]), dc=st.just([cpu_do]))
gcs_cuda_only = dict(gc=st.sampled_from(_cuda_do_list), dc=st.just(_cuda_do_list))
gcs_gpu_only = dict(gc=st.sampled_from(_gpu_do_list), dc=st.just(_gpu_do_list)) # CUDA or ROCm
gcs_no_hip = dict(gc=st.sampled_from(_device_options_no_hip), dc=st.just(_device_options_no_hip))
@contextlib.contextmanager
def temp_workspace(name=b"temp_ws"):
old_ws_name = workspace.CurrentWorkspace()
workspace.SwitchWorkspace(name, True)
yield
workspace.ResetWorkspace()
workspace.SwitchWorkspace(old_ws_name)
def runOpBenchmark(
device_option,
op,
inputs,
input_device_options=None,
iterations=10,
):
op = copy.deepcopy(op)
op.device_option.CopyFrom(device_option)
net = caffe2_pb2.NetDef()
net.op.extend([op])
net.name = op.name if op.name else "test"
with temp_workspace():
_input_device_options = input_device_options or \
core.InferOpBlobDevicesAsDict(op)[0]
for (n, b) in zip(op.input, inputs):
workspace.FeedBlob(
n,
b,
device_option=_input_device_options.get(n, device_option)
)
workspace.CreateNet(net)
ret = workspace.BenchmarkNet(net.name, 1, iterations, True)
return ret
def runOpOnInput(
device_option,
op,
inputs,
input_device_options=None,
):
op = copy.deepcopy(op)
op.device_option.CopyFrom(device_option)
with temp_workspace():
if (len(op.input) > len(inputs)):
raise ValueError(
'must supply an input for each input on the op: %s vs %s' %
(op.input, inputs))
_input_device_options = input_device_options or \
core.InferOpBlobDevicesAsDict(op)[0]
for (n, b) in zip(op.input, inputs):
workspace.FeedBlob(
n,
b,
device_option=_input_device_options.get(n, device_option)
)
workspace.RunOperatorOnce(op)
outputs_to_check = list(range(len(op.output)))
outs = []
for output_index in outputs_to_check:
output_blob_name = op.output[output_index]
output = workspace.FetchBlob(output_blob_name)
outs.append(output)
return outs
class HypothesisTestCase(test_util.TestCase):
"""
A unittest.TestCase subclass with some helper functions for
utilizing the `hypothesis` (hypothesis.readthedocs.io) library.
"""
def assertDeviceChecks(
self,
device_options,
op,
inputs,
outputs_to_check,
input_device_options=None,
threshold=0.01
):
"""
Asserts that the operator computes the same outputs, regardless of
which device it is executed on.
Useful for checking the consistency of GPU and CPU
implementations of operators.
Usage example:
@given(inputs=hu.tensors(n=2), in_place=st.booleans(), **hu.gcs)
def test_sum(self, inputs, in_place, gc, dc):
op = core.CreateOperator("Sum", ["X1", "X2"],
["Y" if not in_place else "X1"])
X1, X2 = inputs
self.assertDeviceChecks(dc, op, [X1, X2], [0])
"""
dc = device_checker.DeviceChecker(
threshold,
device_options=device_options
)
self.assertTrue(
dc.CheckSimple(op, inputs, outputs_to_check, input_device_options)
)
def assertGradientChecks(
self,
device_option,
op,
inputs,
outputs_to_check,
outputs_with_grads,
grad_ops=None,
threshold=0.005,
stepsize=0.05,
input_device_options=None,
ensure_outputs_are_inferred=False,
):
"""
Implements a standard numerical gradient checker for the operator
in question.
Useful for checking the consistency of the forward and
backward implementations of operators.
Usage example:
@given(inputs=hu.tensors(n=2), in_place=st.booleans(), **hu.gcs)
def test_sum(self, inputs, in_place, gc, dc):
op = core.CreateOperator("Sum", ["X1", "X2"],
["Y" if not in_place else "X1"])
X1, X2 = inputs
self.assertGradientChecks(gc, op, [X1, X2], 0, [0])
"""
gc = gradient_checker.GradientChecker(
stepsize=stepsize,
threshold=threshold,
device_option=device_option,
workspace_name=str(device_option),
input_device_options=input_device_options,
)
res, grad, grad_estimated = gc.CheckSimple(
op, inputs, outputs_to_check, outputs_with_grads,
grad_ops=grad_ops,
input_device_options=input_device_options,
ensure_outputs_are_inferred=ensure_outputs_are_inferred,
)
self.assertEqual(grad.shape, grad_estimated.shape)
self.assertTrue(
res,
"Gradient check failed for input " + str(op.input[outputs_to_check])
)
def _assertGradReferenceChecks(
self,
op,
inputs,
ref_outputs,
output_to_grad,
grad_reference,
threshold=1e-4,
):
grad_blob_name = output_to_grad + '_grad'
grad_ops, grad_map = core.GradientRegistry.GetBackwardPass(
[op], {output_to_grad: grad_blob_name})
output_grad = workspace.FetchBlob(output_to_grad)
grad_ref_outputs = grad_reference(output_grad, ref_outputs, inputs)
workspace.FeedBlob(grad_blob_name, workspace.FetchBlob(output_to_grad))
workspace.RunOperatorsOnce(grad_ops)
self.assertEqual(len(grad_ref_outputs), len(inputs))
for (n, ref) in zip(op.input, grad_ref_outputs):
grad_names = grad_map.get(n)
if not grad_names:
# no grad for this input
self.assertIsNone(ref)
else:
if isinstance(grad_names, core.BlobReference):
# dense gradient
ref_vals = ref
ref_indices = None
val_name = grad_names
else:
# sparse gradient
ref_vals, ref_indices = ref
val_name = grad_names.values
vals = workspace.FetchBlob(str(val_name))
np.testing.assert_allclose(
vals,
ref_vals,
atol=threshold,
rtol=threshold,
err_msg='Gradient {0} (x) is not matching the reference (y)'
.format(val_name),
)
if ref_indices is not None:
indices = workspace.FetchBlob(str(grad_names.indices))
np.testing.assert_allclose(indices, ref_indices,
atol=1e-4, rtol=1e-4)
def _assertInferTensorChecks(self, name, shapes, types, output,
ensure_output_is_inferred=False):
self.assertTrue(
not ensure_output_is_inferred or (name in shapes),
'Shape for {0} was not inferred'.format(name))
if name not in shapes:
# No inferred shape or type available
return
output = workspace.FetchBlob(name)
if type(output) is np.ndarray:
if output.dtype == np.dtype('float64'):
correct_type = caffe2_pb2.TensorProto.DOUBLE
elif output.dtype == np.dtype('float32'):
correct_type = caffe2_pb2.TensorProto.FLOAT
elif output.dtype == np.dtype('int32'):
correct_type = caffe2_pb2.TensorProto.INT32
elif output.dtype == np.dtype('int64'):
correct_type = caffe2_pb2.TensorProto.INT64
else:
correct_type = "unknown {}".format(np.dtype)
else:
correct_type = str(type(output))
try:
np.testing.assert_array_equal(
np.array(shapes[name]).astype(np.int32),
np.array(output.shape).astype(np.int32),
err_msg='Shape {} mismatch: {} vs. {}'.format(
name,
shapes[name],
output.shape))
# BUG: Workspace blob type not being set correctly T16121392
if correct_type != caffe2_pb2.TensorProto.INT32:
return
np.testing.assert_equal(
types[name],
correct_type,
err_msg='Type {} mismatch: {} vs. {}'.format(
name, types[name], correct_type,
)
)
except AssertionError as e:
# Temporarily catch these assertion errors when validating
# inferred shape and type info
logging.warning(str(e))
if os.getenv('CAFFE2_ASSERT_SHAPEINFERENCE') == '1' or ensure_output_is_inferred:
raise e
def assertReferenceChecks(
self,
device_option,
op,
inputs,
reference,
input_device_options=None,
threshold=1e-4,
output_to_grad=None,
grad_reference=None,
atol=None,
outputs_to_check=None,
ensure_outputs_are_inferred=False,
):
"""
This runs the reference Python function implementation
(effectively calling `reference(*inputs)`, and compares that
to the output of output, with an absolute/relative tolerance
given by the `threshold` parameter.
Useful for checking the implementation matches the Python
(typically NumPy) implementation of the same functionality.
Usage example:
@given(X=hu.tensor(), inplace=st.booleans(), **hu.gcs)
def test_softsign(self, X, inplace, gc, dc):
op = core.CreateOperator(
"Softsign", ["X"], ["X" if inplace else "Y"])
def softsign(X):
return (X / (1 + np.abs(X)),)
self.assertReferenceChecks(gc, op, [X], softsign)
"""
op = copy.deepcopy(op)
op.device_option.CopyFrom(device_option)
with temp_workspace():
if (len(op.input) > len(inputs)):
raise ValueError(
'must supply an input for each input on the op: %s vs %s' %
(op.input, inputs))
_input_device_options = input_device_options or \
core.InferOpBlobDevicesAsDict(op)[0]
for (n, b) in zip(op.input, inputs):
workspace.FeedBlob(
n,
b,
device_option=_input_device_options.get(n, device_option)
)
net = core.Net("opnet")
net.Proto().op.extend([op])
test_shape_inference = False
try:
(shapes, types) = workspace.InferShapesAndTypes([net])
test_shape_inference = True
except RuntimeError as e:
# Temporarily catch runtime errors when inferring shape
# and type info
logging.warning(str(e))
if os.getenv('CAFFE2_ASSERT_SHAPEINFERENCE') == '1' or ensure_outputs_are_inferred:
raise e
workspace.RunNetOnce(net)
reference_outputs = reference(*inputs)
if not (isinstance(reference_outputs, tuple) or
isinstance(reference_outputs, list)):
raise RuntimeError(
"You are providing a wrong reference implementation. A "
"proper one should return a tuple/list of numpy arrays.")
if not outputs_to_check:
self.assertEqual(len(reference_outputs), len(op.output))
outputs_to_check = list(range(len(op.output)))
outs = []
for (output_index, ref) in zip(outputs_to_check, reference_outputs):
output_blob_name = op.output[output_index]
output = workspace.FetchBlob(output_blob_name)
if output.dtype.kind in ('S', 'O'):
np.testing.assert_array_equal(output, ref)
else:
if atol is None:
atol = threshold
np.testing.assert_allclose(
output, ref, atol=atol, rtol=threshold,
err_msg=(
'Output {0} is not matching the reference'.format(
output_blob_name,
)),
)
if test_shape_inference:
self._assertInferTensorChecks(
output_blob_name, shapes, types, output,
ensure_output_is_inferred=ensure_outputs_are_inferred)
outs.append(output)
if grad_reference is not None:
assert output_to_grad is not None, \
"If grad_reference is set," \
"output_to_grad has to be set as well"
with core.DeviceScope(device_option):
self._assertGradReferenceChecks(
op, inputs, reference_outputs,
output_to_grad, grad_reference,
threshold=threshold)
return outs
def assertValidationChecks(
self,
device_option,
op,
inputs,
validator,
input_device_options=None,
as_kwargs=True,
init_net=None,
):
if as_kwargs:
assert len(set(list(op.input) + list(op.output))) == \
len(op.input) + len(op.output), \
"in-place ops are not supported in as_kwargs mode"
op = copy.deepcopy(op)
op.device_option.CopyFrom(device_option)
with temp_workspace():
_input_device_options = input_device_options or \
core.InferOpBlobDevicesAsDict(op)[0]
for (n, b) in zip(op.input, inputs):
workspace.FeedBlob(
n,
b,
device_option=_input_device_options.get(n, device_option)
)
if init_net:
workspace.RunNetOnce(init_net)
workspace.RunOperatorOnce(op)
outputs = [workspace.FetchBlob(n) for n in op.output]
if as_kwargs:
validator(**dict(zip(
list(op.input) + list(op.output), inputs + outputs)))
else:
validator(inputs=inputs, outputs=outputs)
def assertRunOpRaises(
self,
device_option,
op,
inputs,
input_device_options=None,
exception=(Exception,),
regexp=None,
):
op = copy.deepcopy(op)
op.device_option.CopyFrom(device_option)
with temp_workspace():
_input_device_options = input_device_options or \
core.InferOpBlobDevicesAsDict(op)[0]
for (n, b) in zip(op.input, inputs):
workspace.FeedBlob(
n,
b,
device_option=_input_device_options.get(n, device_option)
)
if regexp is None:
self.assertRaises(exception, workspace.RunOperatorOnce, op)
else:
self.assertRaisesRegex(
exception, regexp, workspace.RunOperatorOnce, op)
|