File: concat_split_op_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (164 lines) | stat: -rw-r--r-- 5,532 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164





import numpy as np
import hypothesis.strategies as st
import unittest
import caffe2.python.hypothesis_test_util as hu
from caffe2.python import core, workspace
from hypothesis import given, settings
import caffe2.python.ideep_test_util as mu

@st.composite
def _tensor_splits(draw, add_axis=False):
    """Generates (axis, split_info, tensor_splits) tuples."""
    tensor = draw(hu.tensor(min_dim=2, min_value=4))  # Each dim has at least 4 elements.
    axis = draw(st.integers(-len(tensor.shape), len(tensor.shape) - 1))
    if add_axis:
        # Simple case: get individual slices along one axis, where each of them
        # is (N-1)-dimensional. The axis will be added back upon concatenation.
        return (
            axis,
            np.ones(tensor.shape[axis], dtype=np.int32),
            [
                np.array(tensor.take(i, axis=axis))
                for i in range(tensor.shape[axis])
            ]
        )
    else:
        # General case: pick some (possibly consecutive, even non-unique)
        # indices at which we will split the tensor, along the given axis.
        splits = sorted(draw(
            st.lists(elements=st.integers(0, tensor.shape[axis]), max_size=4)
        ) + [0, tensor.shape[axis]])
        # Not support empty tensor
        splits = list(set(splits))
        return (
            axis,
            np.array(np.diff(splits), dtype=np.int32),
            [
                tensor.take(range(splits[i], splits[i + 1]), axis=axis)
                for i in range(len(splits) - 1)
            ],
        )


@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
class TestConcatSplitOps(hu.HypothesisTestCase):
    @given(tensor_splits=_tensor_splits(),
           **mu.gcs)
    @settings(deadline=10000)
    def test_concat(self, tensor_splits, gc, dc):
        axis, _, splits = tensor_splits

        op = core.CreateOperator(
            "Concat",
            ['X_{}'.format(i) for i in range(len(splits))],
            ['concat_result', 'split_info'],
            axis=axis
        )

        self.assertDeviceChecks(dc, op, splits, [0, 1])
        self.assertGradientChecks(gc, op, splits, 0, [0])

    @given(tensor_splits=_tensor_splits(),
           split_as_arg=st.booleans(),
           **mu.gcs)
    @settings(deadline=10000)
    def test_split(self, tensor_splits, split_as_arg, gc, dc):
        axis, split_info, splits = tensor_splits

        split_as_arg = True

        if split_as_arg:
            input_names = ['input']
            input_tensors = [np.concatenate(splits, axis=axis)]
            kwargs = dict(axis=axis, split=split_info)
        else:
            input_names = ['input', 'split']
            input_tensors = [np.concatenate(splits, axis=axis), split_info]
            kwargs = dict(axis=axis)

        op = core.CreateOperator(
            "Split",
            input_names,
            ['X_{}'.format(i) for i in range(len(split_info))],
            **kwargs
        )

        def split_ref(input, split=split_info):
            s = np.cumsum([0] + list(split))
            return [
                np.array(input.take(np.arange(s[i], s[i + 1]), axis=axis))
                for i in range(len(split))
            ]
        outputs_with_grad = range(len(split_info))
        self.assertDeviceChecks(dc, op, input_tensors, outputs_with_grad)
        self.assertGradientChecks(gc, op, input_tensors, 0, outputs_with_grad)

    @given(tensor_splits=_tensor_splits(add_axis=True), **mu.gcs)
    @settings(deadline=10000)
    def test_concat_add_axis(self, tensor_splits, gc, dc):
        axis, _, splits = tensor_splits
        op = core.CreateOperator(
            "Concat",
            ['X_{}'.format(i) for i in range(len(splits))],
            ['concat_result', 'split_info'],
            axis=axis,
            add_axis=1
        )

        self.assertDeviceChecks(dc, op, splits, [0, 1])

        for i in range(len(splits)):
            self.assertGradientChecks(gc, op, splits, i, [0])


    @given(tensor_splits=_tensor_splits(add_axis=True), **mu.gcs)
    def test_concat_with_TensorCPU(self, tensor_splits, gc, dc):
        axis, _, splits = tensor_splits
        op0 = core.CreateOperator(
            "Concat",
            ['X_{}'.format(i) for i in range(len(splits))],
            ['concat_result0', 'split_info0'],
            axis=axis,
            add_axis=1,
            device_option=dc[0]
        )
        op1 = core.CreateOperator(
            "Concat",
            ['X_{}'.format(i) for i in range(len(splits))],
            ['concat_result1', 'split_info1'],
            axis=axis,
            add_axis=1,
            device_option=dc[1]
        )

        for i, X in enumerate(splits):
            workspace.FeedBlob('X_{}'.format(i), X, dc[0])

        workspace.RunOperatorOnce(op0)
        res0 = workspace.FetchBlob('concat_result0')
        inf0 = workspace.FetchBlob('split_info0')

        workspace.RunOperatorOnce(op1)
        res1 = workspace.FetchBlob('concat_result1')
        inf1 = workspace.FetchBlob('split_info1')

        if not np.allclose(res0, res1, atol=0.0, rtol=0.0):
            print(res1.flatten())
            print(res0.flatten())
            print(np.max(np.abs(res1 - res0)))
            self.assertTrue(False)

        if not np.allclose(inf0, inf1, atol=0.0, rtol=0.0):
            print(inf1.flatten())
            print(inf0.flatten())
            print(np.max(np.abs(inf1 - inf0)))
            self.assertTrue(False)


if __name__ == "__main__":
    unittest.main()