1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
import unittest
import hypothesis.strategies as st
from hypothesis import given, settings
import numpy as np
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace
from caffe2.python.transformations import optimizeForMKLDNN
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.ideep_test_util as mu
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
class ConvTest(hu.HypothesisTestCase):
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(3, 5),
size=st.integers(8, 10),
input_channels=st.integers(1, 3),
output_channels=st.integers(1, 5),
batch_size=st.integers(1, 3),
use_bias=st.booleans(),
training_mode=st.booleans(),
group=st.integers(1, 2),
**mu.gcs)
@settings(max_examples=10, deadline=None)
def test_convolution(self, stride, pad, kernel, size,
input_channels, output_channels,
batch_size, use_bias, training_mode, group, gc, dc):
training = 1 if training_mode else 0
op = core.CreateOperator(
"Conv",
["X", "w", "b"] if use_bias else ["X", "w"],
["Y"],
stride=stride,
pad=pad,
kernel=kernel,
group=group,
training_mode=training,
)
X = np.random.rand(
batch_size, input_channels * group, size, size).astype(np.float32) - 0.5
w = np.random.rand(output_channels * group, input_channels, kernel, kernel) \
.astype(np.float32) - 0.5
b = np.random.rand(output_channels * group).astype(np.float32) - 0.5
inputs = [X, w, b] if use_bias else [X, w]
self.assertDeviceChecks(dc, op, inputs, [0])
if training_mode:
for i in range(len(inputs)):
self.assertGradientChecks(gc, op, inputs, i, [0], threshold=0.01)
@settings(max_examples=10, deadline=None)
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
size=st.integers(8, 10),
input_channels=st.integers(16, 32),
output_channels=st.integers(16, 32),
batch_size=st.integers(1, 3),
use_bias=st.booleans(),
training_mode=st.booleans(),
**mu.gcs)
def test_winograd_convolution(self, stride, pad, size,
input_channels, output_channels,
batch_size, use_bias, training_mode, gc, dc):
training = 1 if training_mode else 0
conv3x3_winograd_algorithm = 1
kernel = 3
op = core.CreateOperator(
"Conv",
["X", "w", "b"] if use_bias else ["X", "w"],
["Y"],
stride=stride,
pad=pad,
kernel=kernel,
training_mode=training,
algorithm=conv3x3_winograd_algorithm
)
X = np.random.rand(
batch_size, input_channels, size, size).astype(np.float32) - 0.5
w = np.random.rand(
output_channels, input_channels, kernel, kernel) \
.astype(np.float32) - 0.5
b = np.random.rand(output_channels).astype(np.float32) - 0.5
inputs = [X, w, b] if use_bias else [X, w]
self.assertDeviceChecks(dc, op, inputs, [0])
if training_mode:
for i in range(len(inputs)):
self.assertGradientChecks(gc, op, inputs, i, [0], threshold=0.01)
@given(batch_size=st.integers(1, 3), **mu.gcs)
def test_depthwise_convolution(self, batch_size, gc, dc):
op = core.CreateOperator(
"Conv",
["X", "w", "b"],
["Y"],
stride=1,
pad=0,
kernel=1,
group=4,
device_option=dc[0]
)
op1 = core.CreateOperator(
"Conv",
["X", "w", "b"],
["Y"],
stride=1,
pad=0,
kernel=1,
group=4,
device_option=dc[1]
)
X = np.random.rand(batch_size, 544, 14, 14).astype(np.float32)
w = np.random.rand(544, 136, 1, 1).astype(np.float32)
b = np.random.rand(544).astype(np.float32)
workspace.SwitchWorkspace("_device_check_", True)
workspace.FeedBlob('X', X, dc[0])
workspace.FeedBlob('w', w, dc[0])
workspace.FeedBlob('b', b, dc[0])
workspace.RunOperatorOnce(op)
Y0 = workspace.FetchBlob('Y')
workspace.ResetWorkspace()
workspace.FeedBlob('X', X, dc[1])
workspace.FeedBlob('w', w, dc[1])
workspace.FeedBlob('b', b, dc[1])
net = core.Net("net")
old_net = caffe2_pb2.NetDef()
old_net.op.extend([op1])
net.Proto().CopyFrom(old_net)
optimizeForMKLDNN(net)
workspace.RunOperatorOnce(net.Proto().op[0])
Y1 = workspace.FetchBlob('Y')
if not np.allclose(Y0, Y1, atol=0.01, rtol=0.01):
print(Y1.flatten())
print(Y0.flatten())
print(np.max(np.abs(Y1 - Y0)))
self.assertTrue(False)
workspace.ResetWorkspace()
workspace.FeedBlob('X', X, dc[1])
workspace.FeedBlob('w', w, dc[1])
workspace.FeedBlob('b', b, dc[1])
workspace.RunOperatorOnce(op1)
Y2 = workspace.FetchBlob('Y')
if not np.allclose(Y0, Y2, atol=0.01, rtol=0.01):
print(Y2.flatten())
print(Y0.flatten())
print(np.max(np.abs(Y2 - Y0)))
self.assertTrue(False)
if __name__ == "__main__":
unittest.main()
|