File: elementwise_sum_op_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (190 lines) | stat: -rw-r--r-- 6,317 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190





import unittest
import hypothesis.strategies as st
from hypothesis import given
import numpy as np
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.ideep_test_util as mu


@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
class ElementwiseSumTest(hu.HypothesisTestCase):
    @given(size=st.integers(7, 9),
           input_channels=st.integers(1, 3),
           batch_size=st.integers(1, 3),
           inputs=st.integers(2, 7),
           inplace=st.booleans(),
           **mu.gcs)
    def test_elementwise_sum(self,
                                 size,
                                 input_channels,
                                 batch_size,
                                 inputs,
                                 inplace,
                                 gc,
                                 dc):
        op = core.CreateOperator(
            "Sum",
            ["X_{}".format(i) for i in range(inputs)],
            ["X_0" if inplace else "Y"],
        )
        Xs = [np.random.rand(batch_size, input_channels, size, size).astype(
            np.float32) for _ in range(inputs)]
        self.assertDeviceChecks(dc, op, Xs, [0])


    @given(size=st.integers(7, 9),
           input_channels=st.integers(1, 3),
           batch_size=st.integers(1, 3),
           inputs=st.integers(2, 7),
           inplace=st.booleans(),
           **mu.gcs_cpu_ideep)
    def test_elementwise_sum_fallback(self,
                                      size,
                                      input_channels,
                                      batch_size,
                                      inputs,
                                      inplace,
                                      gc,
                                      dc):
        op = core.CreateOperator(
            "Sum",
            ["X_{}".format(i) for i in range(inputs)],
            ["X_0" if inplace else "Y"],
            device_option=dc[1]
        )
        Xs = [np.random.rand(batch_size, input_channels, size, size).astype(
            np.float32) for _ in range(inputs)]

        sum_val = Xs[0]
        workspace.FeedBlob("X_0", Xs[0], dc[0])
        for i, x in enumerate(Xs):
            if i == 0: continue
            sum_val += x
            workspace.FeedBlob("X_{}".format(i), x, dc[1])

        workspace.RunOperatorOnce(op)
        Y = workspace.FetchBlob("X_0" if inplace else "Y")

        if not np.allclose(sum_val, Y, atol=0.01, rtol=0.01):
            print(Y.flatten())
            print(sum_val.flatten())
            print(np.max(np.abs(Y - sum_val)))
            self.assertTrue(False)


    @given(size=st.integers(7, 9),
           input_channels=st.integers(1, 3),
           batch_size=st.integers(1, 3),
           inputs=st.integers(2, 7),
           inplace=st.booleans(),
           **mu.gcs_cpu_ideep)
    def test_int8_elementwise_sum(self,
                                 size,
                                 input_channels,
                                 batch_size,
                                 inputs,
                                 inplace,
                                 gc,
                                 dc):
        sum_fp32 = core.CreateOperator(
            "Sum",
            ["X_{}".format(i) for i in range(inputs)],
            ["X_0" if inplace else "Y"],
        )
        Xs = [np.random.rand(batch_size, input_channels, size, size).astype(
            np.float32) for _ in range(inputs)]

        old_ws_name = workspace.CurrentWorkspace()
        workspace.SwitchWorkspace("_device_check_", True)

        Xi_scales = []
        Xi_zero_points = []
        for i, X in enumerate(Xs):
            workspace.FeedBlob("X_{}".format(i), X, dc[0])
            if X.min() >= 0:
                Xi_scales.append(np.absolute(X).max() / 0xFF)
                Xi_zero_points.append(0)
            else:
                Xi_scales.append(np.absolute(X).max() / 0x7F)
                Xi_zero_points.append(128)

        workspace.RunOperatorOnce(sum_fp32)
        Y = workspace.FetchBlob("X_0" if inplace else "Y")

        if Y.min() >= 0:
            Y_scale = np.absolute(Y).max() / 0xFF
            Y_zero_point = 0
        else:
            Y_scale = np.absolute(Y).max() / 0x7F
            Y_zero_point = 128

        workspace.ResetWorkspace()

        net = caffe2_pb2.NetDef()
        for i, Xi in enumerate(Xs):
            workspace.FeedBlob("Xi_{}".format(i), Xi, dc[1])
            sw2nhwc = core.CreateOperator(
                "NCHW2NHWC",
                ["Xi_{}".format(i)],
                ["Xi_{}_nhwc".format(i)],
                device_option=dc[1]
            )
            quantize = core.CreateOperator(
                "Int8Quantize",
                ["Xi_{}_nhwc".format(i)],
                ["Xi_{}_quantized".format(i)],
                engine="DNNLOWP",
                device_option=dc[1],
                Y_zero_point=Xi_zero_points[i],
                Y_scale=Xi_scales[i],
            )
            net.op.extend([sw2nhwc, quantize])

        sum = core.CreateOperator(
            "Int8Sum",
            ["Xi_{}_quantized".format(i) for i in range(inputs)],
            ["Xi_0_quantized" if inplace else "Y_quantized"],
            engine="DNNLOWP",
            device_option=dc[1],
            Y_zero_point=Y_zero_point,
            Y_scale=Y_scale,
        )

        dequantize = core.CreateOperator(
            "Int8Dequantize",
            ["Xi_0_quantized" if inplace else "Y_quantized"],
            ["Y_nhwc"],
            engine="DNNLOWP",
            device_option=dc[1],
        )

        sw2nchw = core.CreateOperator(
            "NHWC2NCHW",
            ["Y_nhwc"],
            ["Y_out"],
            device_option=dc[1]
        )

        net.op.extend([sum, dequantize, sw2nchw])
        workspace.RunNetOnce(net)
        Y_out = workspace.FetchBlob("Y_out")

        MSE = np.square(np.subtract(Y, Y_out)).mean()
        if MSE > 0.005:
            print(Y.flatten())
            print(Y_out.flatten())
            print(np.max(np.abs(Y_out - Y)))
            print("MSE", MSE)
            self.assertTrue(False)

        workspace.SwitchWorkspace(old_ws_name)

if __name__ == "__main__":
    unittest.main()