File: expanddims_squeeze_op_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (136 lines) | stat: -rw-r--r-- 4,285 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136





import unittest
import hypothesis.strategies as st
from hypothesis import given
import numpy as np
from caffe2.python import core, workspace
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.ideep_test_util as mu


@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
class ExpandDimsSqueezeTest(hu.HypothesisTestCase):
    @given(
        squeeze_dims=st.lists(st.integers(0, 3), min_size=1, max_size=3),
        inplace=st.booleans(),
        **mu.gcs
        )
    def test_squeeze(self, squeeze_dims, inplace, gc, dc):
        shape = [
            1 if dim in squeeze_dims else np.random.randint(1, 5)
            for dim in range(4)
        ]
        X = np.random.rand(*shape).astype(np.float32)
        op = core.CreateOperator(
            "Squeeze", "X", "X" if inplace else "Y", dims=squeeze_dims
        )
        self.assertDeviceChecks(dc, op, [X], [0])

    @given(
        squeeze_dims=st.lists(st.integers(0, 3), min_size=1, max_size=3),
        inplace=st.booleans(),
        **mu.gcs_cpu_ideep
        )
    def test_squeeze_fallback(self, squeeze_dims, inplace, gc, dc):
        shape = [
            1 if dim in squeeze_dims else np.random.randint(1, 5)
            for dim in range(4)
        ]
        X = np.random.rand(*shape).astype(np.float32)
        op0 = core.CreateOperator(
            "Squeeze",
            "X0",
            "X0" if inplace else "Y0",
            dims=squeeze_dims,
            device_option=dc[0]
        )
        workspace.FeedBlob('X0', X, dc[0])
        workspace.RunOperatorOnce(op0)
        Y0 = workspace.FetchBlob("X0" if inplace else "Y0")

        op1 = core.CreateOperator(
            "Squeeze",
            "X1",
            "X1" if inplace else "Y1",
            dims=squeeze_dims,
            device_option=dc[1]
        )
        workspace.FeedBlob('X1', X, dc[0])
        workspace.RunOperatorOnce(op1)
        Y1 = workspace.FetchBlob("X1" if inplace else "Y1")

        if not np.allclose(Y0, Y1, atol=0.01, rtol=0.01):
            print(Y1.flatten())
            print(Y0.flatten())
            print(np.max(np.abs(Y1 - Y0)))
            self.assertTrue(False)


    @given(
        squeeze_dims=st.lists(st.integers(0, 3), min_size=1, max_size=3),
        inplace=st.booleans(),
        **mu.gcs
        )
    def test_expand_dims(self, squeeze_dims, inplace, gc, dc):
        oshape = [
            1 if dim in squeeze_dims else np.random.randint(2, 5)
            for dim in range(4)
        ]
        nshape = [s for s in oshape if s!=1]
        expand_dims = [i for i in range(len(oshape)) if oshape[i]==1]

        X = np.random.rand(*nshape).astype(np.float32)
        op = core.CreateOperator(
            "ExpandDims", "X", "X" if inplace else "Y", dims=expand_dims
        )
        self.assertDeviceChecks(dc, op, [X], [0])

    @given(
        squeeze_dims=st.lists(st.integers(0, 3), min_size=1, max_size=3),
        inplace=st.booleans(),
        **mu.gcs_cpu_ideep
        )
    def test_expand_dims_fallback(self, squeeze_dims, inplace, gc, dc):
        oshape = [
            1 if dim in squeeze_dims else np.random.randint(2, 5)
            for dim in range(4)
        ]
        nshape = [s for s in oshape if s!=1]
        expand_dims = [i for i in range(len(oshape)) if oshape[i]==1]

        X = np.random.rand(*nshape).astype(np.float32)
        op0 = core.CreateOperator(
            "ExpandDims",
            "X0",
            "X0" if inplace else "Y0",
            dims=expand_dims,
            device_option=dc[0]
        )
        workspace.FeedBlob('X0', X, dc[0])
        workspace.RunOperatorOnce(op0)
        Y0 = workspace.FetchBlob("X0" if inplace else "Y0")

        op1 = core.CreateOperator(
            "ExpandDims",
            "X1",
            "X1" if inplace else "Y1",
            dims=expand_dims,
            device_option=dc[1]
        )
        workspace.FeedBlob('X1', X, dc[0])
        workspace.RunOperatorOnce(op1)
        Y1 = workspace.FetchBlob("X1" if inplace else "Y1")

        if not np.allclose(Y0, Y1, atol=0.01, rtol=0.01):
            print(Y1.flatten())
            print(Y0.flatten())
            print(np.max(np.abs(Y1 - Y0)))
            self.assertTrue(False)


if __name__ == "__main__":
    unittest.main()