1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
import unittest
import hypothesis.strategies as st
from hypothesis import assume, given, settings
import numpy as np
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.ideep_test_util as mu
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
class PoolTest(hu.HypothesisTestCase):
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(3, 5),
size=st.integers(7, 9),
input_channels=st.integers(1, 3),
batch_size=st.integers(1, 3),
method=st.sampled_from(["MaxPool", "AveragePool"]),
**mu.gcs)
@settings(deadline=10000)
def test_pooling(self, stride, pad, kernel, size,
input_channels, batch_size,
method, gc, dc):
assume(pad < kernel)
op = core.CreateOperator(
method,
["X"],
["Y"],
stride=stride,
pad=pad,
kernel=kernel,
device_option=dc[0],
)
X = np.random.rand(
batch_size, input_channels, size, size
).astype(np.float32)
self.assertDeviceChecks(dc, op, [X], [0])
if 'MaxPool' not in method:
self.assertGradientChecks(gc, op, [X], 0, [0])
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(3, 5),
size=st.integers(7, 9),
input_channels=st.integers(1, 3),
batch_size=st.integers(1, 3),
method=st.sampled_from(["MaxPool", "AveragePool"]),
**mu.gcs_cpu_ideep)
def test_int8_pooling(self, stride, pad, kernel, size,
input_channels, batch_size,
method, gc, dc):
assume(pad < kernel)
pool_fp32 = core.CreateOperator(
method,
["X"],
["Y"],
stride=stride,
pad=pad,
kernel=kernel,
device_option=dc[0]
)
X = np.random.rand(
batch_size, input_channels, size, size).astype(np.float32)
if X.min() >=0:
scale = np.absolute(X).max() / 0xFF
zero_point = 0
else:
scale = np.absolute(X).max() / 0x7F
zero_point = 128
old_ws_name = workspace.CurrentWorkspace()
workspace.SwitchWorkspace("_device_check_", True)
workspace.FeedBlob("X", X, dc[0])
workspace.RunOperatorOnce(pool_fp32)
Y = workspace.FetchBlob("Y")
workspace.ResetWorkspace()
sw2nhwc = core.CreateOperator(
"NCHW2NHWC",
["Xi"],
["Xi_nhwc"],
device_option=dc[1]
)
quantize = core.CreateOperator(
"Int8Quantize",
["Xi_nhwc"],
["Xi_quantized"],
engine="DNNLOWP",
device_option=dc[1],
Y_zero_point=zero_point,
Y_scale=scale,
)
pool = core.CreateOperator(
"Int8{}".format(method),
["Xi_quantized"],
["Y_quantized"],
stride=stride,
pad=pad,
kernel=kernel,
engine="DNNLOWP",
device_option=dc[1],
)
dequantize = core.CreateOperator(
"Int8Dequantize",
["Y_quantized"],
["Y_nhwc"],
engine="DNNLOWP",
device_option=dc[1],
)
sw2nchw = core.CreateOperator(
"NHWC2NCHW",
["Y_nhwc"],
["Y_out"],
device_option=dc[1]
)
net = caffe2_pb2.NetDef()
net.op.extend([sw2nhwc, quantize, pool, dequantize, sw2nchw])
workspace.FeedBlob("Xi", X, dc[1])
workspace.RunNetOnce(net)
Y_out = workspace.FetchBlob("Y_out")
MSE = np.square(np.subtract(Y, Y_out)).mean()
if MSE > 0.005:
print(Y.flatten())
print(Y_out.flatten())
print(np.max(np.abs(Y_out - Y)))
print("MSE", MSE)
self.assertTrue(False)
workspace.SwitchWorkspace(old_ws_name)
if __name__ == "__main__":
unittest.main()
|