File: relu_op_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (129 lines) | stat: -rw-r--r-- 3,705 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129





import unittest
import hypothesis.strategies as st
from hypothesis import given, settings
import numpy as np
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.ideep_test_util as mu

@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
class ReluTest(hu.HypothesisTestCase):
    @given(X=hu.tensor(),
           inplace=st.booleans(),
           **mu.gcs)
    @settings(deadline=1000)
    def test_relu(self, X, inplace, gc, dc):
        op = core.CreateOperator(
            "Relu",
            ["X"],
            ["Y"] if not inplace else ["X"],
        )
        # go away from the origin point to avoid kink problems
        X += 0.02 * np.sign(X)
        X[X == 0.0] += 0.02

        self.assertDeviceChecks(dc, op, [X], [0])

        self.assertGradientChecks(gc, op, [X], 0, [0])

    @given(size=st.integers(7, 9),
           input_channels=st.integers(1, 3),
           batch_size=st.integers(1, 3),
           inplace=st.booleans(),
           **mu.gcs_cpu_ideep)
    @settings(max_examples=10, deadline=None)
    def test_int8_relu(self, size, input_channels, batch_size, inplace, gc, dc):
        relu_fp32 = core.CreateOperator(
            "Relu",
            ["X"],
            ["Y"] if not inplace else ["X"],
            device_option=dc[0]
        )

        X = np.random.rand(
            batch_size, input_channels, size, size).astype(np.float32) - 0.5
        # go away from the origin point to avoid kink problems
        X += 0.02 * np.sign(X)
        X[X == 0.0] += 0.02

        if X.min() >=0:
            scale = np.absolute(X).max() / 0xFF
            zero_point = 0
        else:
            scale = np.absolute(X).max() / 0x7F
            zero_point = 128

        old_ws_name = workspace.CurrentWorkspace()
        workspace.SwitchWorkspace("_device_check_", True)

        workspace.FeedBlob("X", X, dc[0])
        workspace.RunOperatorOnce(relu_fp32)
        Y = workspace.FetchBlob("X" if inplace else "Y")

        workspace.ResetWorkspace()

        sw2nhwc = core.CreateOperator(
            "NCHW2NHWC",
            ["Xi"],
            ["Xi_nhwc"],
            device_option=dc[1]
        )

        quantize = core.CreateOperator(
            "Int8Quantize",
            ["Xi_nhwc"],
            ["Xi_quantized"],
            engine="DNNLOWP",
            device_option=dc[1],
            Y_zero_point=zero_point,
            Y_scale=scale,
        )

        relu = core.CreateOperator(
            "Int8Relu",
            ["Xi_quantized"],
            ["Y_quantized"] if not inplace else ["Xi_quantized"],
            engine="DNNLOWP",
            device_option=dc[1],
        )

        dequantize = core.CreateOperator(
            "Int8Dequantize",
            ["Y_quantized"] if not inplace else ["Xi_quantized"],
            ["Y_nhwc"],
            engine="DNNLOWP",
            device_option=dc[1],
        )

        sw2nchw = core.CreateOperator(
            "NHWC2NCHW",
            ["Y_nhwc"],
            ["Y_out"],
            device_option=dc[1]
        )

        net = caffe2_pb2.NetDef()
        net.op.extend([sw2nhwc, quantize, relu, dequantize, sw2nchw])

        workspace.FeedBlob("Xi", X, dc[1])
        workspace.RunNetOnce(net)
        Y_out = workspace.FetchBlob("Y_out")

        MSE = np.square(np.subtract(Y, Y_out)).mean()
        if MSE > 0.005:
            print(Y.flatten())
            print(Y_out.flatten())
            print(np.max(np.abs(Y_out - Y)))
            print("MSE", MSE)
            self.assertTrue(False)

        workspace.SwitchWorkspace(old_ws_name)

if __name__ == "__main__":
    unittest.main()