1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
|
import unittest
import hypothesis.strategies as st
from hypothesis import given, settings
import numpy as np
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.ideep_test_util as mu
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
class ReluTest(hu.HypothesisTestCase):
@given(X=hu.tensor(),
inplace=st.booleans(),
**mu.gcs)
@settings(deadline=1000)
def test_relu(self, X, inplace, gc, dc):
op = core.CreateOperator(
"Relu",
["X"],
["Y"] if not inplace else ["X"],
)
# go away from the origin point to avoid kink problems
X += 0.02 * np.sign(X)
X[X == 0.0] += 0.02
self.assertDeviceChecks(dc, op, [X], [0])
self.assertGradientChecks(gc, op, [X], 0, [0])
@given(size=st.integers(7, 9),
input_channels=st.integers(1, 3),
batch_size=st.integers(1, 3),
inplace=st.booleans(),
**mu.gcs_cpu_ideep)
@settings(max_examples=10, deadline=None)
def test_int8_relu(self, size, input_channels, batch_size, inplace, gc, dc):
relu_fp32 = core.CreateOperator(
"Relu",
["X"],
["Y"] if not inplace else ["X"],
device_option=dc[0]
)
X = np.random.rand(
batch_size, input_channels, size, size).astype(np.float32) - 0.5
# go away from the origin point to avoid kink problems
X += 0.02 * np.sign(X)
X[X == 0.0] += 0.02
if X.min() >=0:
scale = np.absolute(X).max() / 0xFF
zero_point = 0
else:
scale = np.absolute(X).max() / 0x7F
zero_point = 128
old_ws_name = workspace.CurrentWorkspace()
workspace.SwitchWorkspace("_device_check_", True)
workspace.FeedBlob("X", X, dc[0])
workspace.RunOperatorOnce(relu_fp32)
Y = workspace.FetchBlob("X" if inplace else "Y")
workspace.ResetWorkspace()
sw2nhwc = core.CreateOperator(
"NCHW2NHWC",
["Xi"],
["Xi_nhwc"],
device_option=dc[1]
)
quantize = core.CreateOperator(
"Int8Quantize",
["Xi_nhwc"],
["Xi_quantized"],
engine="DNNLOWP",
device_option=dc[1],
Y_zero_point=zero_point,
Y_scale=scale,
)
relu = core.CreateOperator(
"Int8Relu",
["Xi_quantized"],
["Y_quantized"] if not inplace else ["Xi_quantized"],
engine="DNNLOWP",
device_option=dc[1],
)
dequantize = core.CreateOperator(
"Int8Dequantize",
["Y_quantized"] if not inplace else ["Xi_quantized"],
["Y_nhwc"],
engine="DNNLOWP",
device_option=dc[1],
)
sw2nchw = core.CreateOperator(
"NHWC2NCHW",
["Y_nhwc"],
["Y_out"],
device_option=dc[1]
)
net = caffe2_pb2.NetDef()
net.op.extend([sw2nhwc, quantize, relu, dequantize, sw2nchw])
workspace.FeedBlob("Xi", X, dc[1])
workspace.RunNetOnce(net)
Y_out = workspace.FetchBlob("Y_out")
MSE = np.square(np.subtract(Y, Y_out)).mean()
if MSE > 0.005:
print(Y.flatten())
print(Y_out.flatten())
print(np.max(np.abs(Y_out - Y)))
print("MSE", MSE)
self.assertTrue(False)
workspace.SwitchWorkspace(old_ws_name)
if __name__ == "__main__":
unittest.main()
|