File: reshape_op_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (144 lines) | stat: -rw-r--r-- 5,919 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144





from caffe2.python.test_util import TestCase
from caffe2.proto import caffe2_pb2
import unittest
import numpy as np
from caffe2.python import core, workspace


@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
class TestReShapeOps(TestCase):
    def test_reshape_ops(self):
        device_opt = core.DeviceOption(caffe2_pb2.IDEEP, 0)
        with core.DeviceScope(device_opt):
            workspace.FeedBlob('res', np.array([[0, 0, 0, 0]], dtype=np.float32))
            workspace.FeedBlob('shape', np.array([1, 4], dtype=np.int32), core.DeviceOption(caffe2_pb2.CPU, 0))
            workspace.FeedBlob('input', np.zeros((2, 2), dtype=np.float32))
            workspace.RunOperatorOnce(core.CreateOperator(
                'Reshape', ['input', 'shape'], ['output', 'old_shape']))
            assert ((workspace.FetchBlob('output') ==
                    workspace.FetchBlob('res')).all())

    def test_basic_reshape(self):
        _test_reshape(old_shape=(4, 2, 1), new_shape=(2, 4))
        _test_reshape(old_shape=(4, 2, 1), new_shape=(2, 4), arg_shape=False)

    def test_int64_reshape_input(self):
        _test_reshape(old_shape=(4, 2, 1), new_shape=(2, 4), arg_shape=False, shape_dtype=np.int64)

    def test_missing_dim(self):
        _test_reshape(old_shape=(4, 2, 1), new_shape=(-1, 8))
        _test_reshape(old_shape=(4, 2, 1), new_shape=(-1, 8), arg_shape=False)

    def test_in_place(self):
        _test_reshape(old_shape=(4, 2, 1), new_shape=(-1, 8), in_place=True)
        _test_reshape(old_shape=(4, 2, 1), new_shape=(-1, 8),
                      in_place=True, arg_shape=False)

    def test_zero_dim(self):
        _test_reshape(old_shape=(4, 2, 1), new_shape=(0, 0, 0),
                      expected_shape=(4, 2, 1))
        _test_reshape(old_shape=(4, 2, 1), new_shape=(0, 0, 0),
                      expected_shape=(4, 2, 1), arg_shape=False)
        _test_reshape(old_shape=(4, 2, 1), new_shape=(0, 2, 1),
                      expected_shape=(4, 2, 1))
        _test_reshape(old_shape=(4, 2, 1), new_shape=(0, 2, 1),
                      expected_shape=(4, 2, 1), arg_shape=False)

    def test_zero_dim_and_missing_dim(self):
        _test_reshape(old_shape=(4, 2, 1), new_shape=(0, -1, 0),
                      expected_shape=(4, 2, 1))
        _test_reshape(old_shape=(4, 2, 1), new_shape=(0, -1, 0),
                      expected_shape=(4, 2, 1), arg_shape=False)
        _test_reshape(old_shape=(4, 3, 2), new_shape=(-1, 0),
                      expected_shape=(8, 3))
        _test_reshape(old_shape=(4, 3, 2), new_shape=(-1, 0),
                      expected_shape=(8, 3), arg_shape=False)

    def test_backprop(self):
        device_opt = core.DeviceOption(caffe2_pb2.IDEEP, 0)
        with core.DeviceScope(device_opt):
            old_shape = (4, 2, 1)
            new_shape = (1, 8)
            X = np.random.rand(*old_shape).astype(np.float32)
            Y = np.random.rand(*new_shape).astype(np.float32)

            net = core.Net('net')

            net.GivenTensorFill([], 'X', shape=old_shape, values=X.flatten())
            net.GivenTensorFill([], 'Y', shape=new_shape, values=Y.flatten())

            net.Reshape(['X'], ['X_out', 'old_shape'], shape=new_shape)
            net.Mul(['X_out', 'Y'], 'Z')
            net.AddGradientOperators(['Z'])

            workspace.RunNetOnce(net)

            Z = workspace.FetchBlob('Z')
            X_grad = workspace.FetchBlob('X_grad')

            # Check forward computation
            np.testing.assert_allclose(
                Z.squeeze(), (X.reshape(new_shape) * Y).squeeze(), rtol=1e-5)

            # Check the shape of the gradient
            np.testing.assert_array_equal(X_grad.shape, X.shape)

            # Check the gradient
            np.testing.assert_allclose(X_grad, Y.reshape(old_shape), rtol=1e-5)

    def test_input_shape_changes(self):
        device_opt = core.DeviceOption(caffe2_pb2.IDEEP, 0)
        with core.DeviceScope(device_opt):
            workspace.FeedBlob(
                'input_blob',
                np.array(np.random.rand(10, 20, 10), dtype=np.float32))
            net = core.Net('mynet')
            z, _ = net.Reshape('input_blob',
                               ['z_reshape', 'dummy_size'],
                               shape=(-1, 10))
            workspace.CreateNet(net)
            workspace.RunNet(net)
            workspace.FeedBlob(
                'input_blob',
                np.array(np.random.rand(10, 40, 10), dtype=np.float32))
            workspace.RunNet(net)


def _test_reshape(old_shape, new_shape, expected_shape=None, arg_shape=True,
                  in_place=False, shape_dtype=np.int32):
    devices = [core.DeviceOption(caffe2_pb2.IDEEP, 0)]

    for device_opt in devices:
        with core.DeviceScope(device_opt):
            if expected_shape is None:
                expected_shape = new_shape
            X = np.random.rand(*old_shape).astype(np.float32)

            blob_in = 'X'
            blob_out = blob_in if in_place else blob_in + '_out'

            if arg_shape:
                op = core.CreateOperator('Reshape',
                                         [blob_in],
                                         [blob_out, 'old_shape'],
                                         shape=new_shape)
            else:
                op = core.CreateOperator('Reshape',
                                         [blob_in, 'new_shape'],
                                         [blob_out, 'old_shape'])
                workspace.FeedBlob('new_shape', np.asarray(new_shape, dtype=shape_dtype),
                                   core.DeviceOption(caffe2_pb2.CPU, 0))

            workspace.FeedBlob(blob_in, X)
            workspace.RunOperatorOnce(op)

            Y = workspace.FetchBlob(blob_out)
            np.testing.assert_allclose(Y, X.reshape(expected_shape))

if __name__ == "__main__":
    unittest.main()