File: spatial_bn_op_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (133 lines) | stat: -rw-r--r-- 5,237 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133





from hypothesis import given, settings
import hypothesis.strategies as st
import numpy as np
import unittest
from caffe2.python import core, workspace
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.ideep_test_util as mu


@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
class TestSpatialBN(hu.HypothesisTestCase):
    @given(size=st.integers(7, 10),
           input_channels=st.integers(7, 10),
           batch_size=st.integers(1, 3),
           seed=st.integers(0, 65535),
           order=st.sampled_from(["NCHW"]),
           epsilon=st.floats(min_value=1e-5, max_value=1e-2),
           inplace=st.sampled_from([True, False]),
           **mu.gcs)
    @settings(deadline=1000)
    def test_spatialbn_test_mode(
            self, size, input_channels, batch_size, seed, order, epsilon,
            inplace, gc, dc):
        op = core.CreateOperator(
            "SpatialBN",
            ["X", "scale", "bias", "mean", "var"],
            ["X" if inplace else "Y"],
            order=order,
            is_test=True,
            epsilon=epsilon
        )

        def reference_spatialbn_test(X, scale, bias, mean, var):
            if order == "NCHW":
                scale = scale[np.newaxis, :, np.newaxis, np.newaxis]
                bias = bias[np.newaxis, :, np.newaxis, np.newaxis]
                mean = mean[np.newaxis, :, np.newaxis, np.newaxis]
                var = var[np.newaxis, :, np.newaxis, np.newaxis]
            return ((X - mean) / np.sqrt(var + epsilon) * scale + bias,)

        np.random.seed(1701)
        scale = np.random.rand(input_channels).astype(np.float32) + 0.5
        bias = np.random.rand(input_channels).astype(np.float32) - 0.5
        mean = np.random.randn(input_channels).astype(np.float32)
        var = np.random.rand(input_channels).astype(np.float32) + 0.5
        X = np.random.rand(
            batch_size, input_channels, size, size).astype(np.float32) - 0.5

        if order == "NHWC":
            X = X.swapaxes(1, 2).swapaxes(2, 3)

        self.assertDeviceChecks(dc, op, [X, scale, bias, mean, var], [0])

    @given(size=st.integers(7, 10),
           input_channels=st.integers(7, 10),
           batch_size=st.integers(1, 3),
           seed=st.integers(0, 65535),
           order=st.sampled_from(["NCHW"]),
           epsilon=st.floats(1e-5, 1e-2),
           inplace=st.sampled_from([True, False]),
           **mu.gcs)
    def test_spatialbn_train_mode(
            self, size, input_channels, batch_size, seed, order, epsilon,
            inplace, gc, dc):
        print("dc0: {}, dc1: {}".format(dc[0], dc[1]))
        op = core.CreateOperator(
            "SpatialBN",
            ["X", "scale", "bias", "running_mean", "running_var"],
            ["X" if inplace else "Y",
            "running_mean", "running_var", "saved_mean", "saved_var"],
            order=order,
            is_test=False,
            epsilon=epsilon,
        )
        np.random.seed(1701)
        scale = np.random.rand(input_channels).astype(np.float32) + 0.5
        bias = np.random.rand(input_channels).astype(np.float32) - 0.5
        running_mean = np.random.randn(input_channels).astype(np.float32)
        running_var = np.random.rand(input_channels).astype(np.float32) + 0.5
        X = np.random.rand(
            batch_size, input_channels, size, size).astype(np.float32) - 0.5

        if order == "NHWC":
            X = X.swapaxes(1, 2).swapaxes(2, 3)

        # TODO: It looks like IDEEP spatial_bn op outputs save_var (output[4])
        # as the reciprocal of CPU op's output. Need to check back and add
        # output[4] for comparison
        self.assertDeviceChecks(dc, op, [X, scale, bias, running_mean, running_var],
            [0, 1, 2, 3])

    @given(size=st.integers(7, 10),
           input_channels=st.integers(1, 10),
           batch_size=st.integers(1, 3),
           seed=st.integers(0, 65535),
           order=st.sampled_from(["NCHW"]),
           epsilon=st.floats(min_value=1e-5, max_value=1e-2),
           **mu.gcs)
    @settings(deadline=None, max_examples=50)
    def test_spatialbn_train_mode_gradient_check(
            self, size, input_channels, batch_size, seed, order, epsilon,
            gc, dc):
        op = core.CreateOperator(
            "SpatialBN",
            ["X", "scale", "bias", "mean", "var"],
            ["Y", "mean", "var", "saved_mean", "saved_var"],
            order=order,
            is_test=False,
            epsilon=epsilon,
        )
        np.random.seed(seed)
        scale = np.random.rand(input_channels).astype(np.float32) + 0.5
        bias = np.random.rand(input_channels).astype(np.float32) - 0.5
        mean = np.random.randn(input_channels).astype(np.float32)
        var = np.random.rand(input_channels).astype(np.float32) + 0.5
        X = np.random.rand(
            batch_size, input_channels, size, size).astype(np.float32) - 0.5
        if order == "NHWC":
            X = X.swapaxes(1, 2).swapaxes(2, 3)

        for input_to_check in [0, 1, 2]:  # dX, dScale, dBias
            self.assertGradientChecks(gc, op, [X, scale, bias, mean, var],
                                      input_to_check, [0])



if __name__ == "__main__":
    unittest.main()