1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
from hypothesis import given, settings
import hypothesis.strategies as st
import numpy as np
import unittest
from caffe2.python import core, workspace
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.ideep_test_util as mu
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
class TestSpatialBN(hu.HypothesisTestCase):
@given(size=st.integers(7, 10),
input_channels=st.integers(7, 10),
batch_size=st.integers(1, 3),
seed=st.integers(0, 65535),
order=st.sampled_from(["NCHW"]),
epsilon=st.floats(min_value=1e-5, max_value=1e-2),
inplace=st.sampled_from([True, False]),
**mu.gcs)
@settings(deadline=1000)
def test_spatialbn_test_mode(
self, size, input_channels, batch_size, seed, order, epsilon,
inplace, gc, dc):
op = core.CreateOperator(
"SpatialBN",
["X", "scale", "bias", "mean", "var"],
["X" if inplace else "Y"],
order=order,
is_test=True,
epsilon=epsilon
)
def reference_spatialbn_test(X, scale, bias, mean, var):
if order == "NCHW":
scale = scale[np.newaxis, :, np.newaxis, np.newaxis]
bias = bias[np.newaxis, :, np.newaxis, np.newaxis]
mean = mean[np.newaxis, :, np.newaxis, np.newaxis]
var = var[np.newaxis, :, np.newaxis, np.newaxis]
return ((X - mean) / np.sqrt(var + epsilon) * scale + bias,)
np.random.seed(1701)
scale = np.random.rand(input_channels).astype(np.float32) + 0.5
bias = np.random.rand(input_channels).astype(np.float32) - 0.5
mean = np.random.randn(input_channels).astype(np.float32)
var = np.random.rand(input_channels).astype(np.float32) + 0.5
X = np.random.rand(
batch_size, input_channels, size, size).astype(np.float32) - 0.5
if order == "NHWC":
X = X.swapaxes(1, 2).swapaxes(2, 3)
self.assertDeviceChecks(dc, op, [X, scale, bias, mean, var], [0])
@given(size=st.integers(7, 10),
input_channels=st.integers(7, 10),
batch_size=st.integers(1, 3),
seed=st.integers(0, 65535),
order=st.sampled_from(["NCHW"]),
epsilon=st.floats(1e-5, 1e-2),
inplace=st.sampled_from([True, False]),
**mu.gcs)
def test_spatialbn_train_mode(
self, size, input_channels, batch_size, seed, order, epsilon,
inplace, gc, dc):
print("dc0: {}, dc1: {}".format(dc[0], dc[1]))
op = core.CreateOperator(
"SpatialBN",
["X", "scale", "bias", "running_mean", "running_var"],
["X" if inplace else "Y",
"running_mean", "running_var", "saved_mean", "saved_var"],
order=order,
is_test=False,
epsilon=epsilon,
)
np.random.seed(1701)
scale = np.random.rand(input_channels).astype(np.float32) + 0.5
bias = np.random.rand(input_channels).astype(np.float32) - 0.5
running_mean = np.random.randn(input_channels).astype(np.float32)
running_var = np.random.rand(input_channels).astype(np.float32) + 0.5
X = np.random.rand(
batch_size, input_channels, size, size).astype(np.float32) - 0.5
if order == "NHWC":
X = X.swapaxes(1, 2).swapaxes(2, 3)
# TODO: It looks like IDEEP spatial_bn op outputs save_var (output[4])
# as the reciprocal of CPU op's output. Need to check back and add
# output[4] for comparison
self.assertDeviceChecks(dc, op, [X, scale, bias, running_mean, running_var],
[0, 1, 2, 3])
@given(size=st.integers(7, 10),
input_channels=st.integers(1, 10),
batch_size=st.integers(1, 3),
seed=st.integers(0, 65535),
order=st.sampled_from(["NCHW"]),
epsilon=st.floats(min_value=1e-5, max_value=1e-2),
**mu.gcs)
@settings(deadline=None, max_examples=50)
def test_spatialbn_train_mode_gradient_check(
self, size, input_channels, batch_size, seed, order, epsilon,
gc, dc):
op = core.CreateOperator(
"SpatialBN",
["X", "scale", "bias", "mean", "var"],
["Y", "mean", "var", "saved_mean", "saved_var"],
order=order,
is_test=False,
epsilon=epsilon,
)
np.random.seed(seed)
scale = np.random.rand(input_channels).astype(np.float32) + 0.5
bias = np.random.rand(input_channels).astype(np.float32) - 0.5
mean = np.random.randn(input_channels).astype(np.float32)
var = np.random.rand(input_channels).astype(np.float32) + 0.5
X = np.random.rand(
batch_size, input_channels, size, size).astype(np.float32) - 0.5
if order == "NHWC":
X = X.swapaxes(1, 2).swapaxes(2, 3)
for input_to_check in [0, 1, 2]: # dX, dScale, dBias
self.assertGradientChecks(gc, op, [X, scale, bias, mean, var],
input_to_check, [0])
if __name__ == "__main__":
unittest.main()
|