1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace
from caffe2.python.models.download import ModelDownloader
import numpy as np
import argparse
import time
def GetArgumentParser():
parser = argparse.ArgumentParser(description="Caffe2 benchmark.")
parser.add_argument(
"--batch_size",
type=int,
default=128,
help="The batch size."
)
parser.add_argument("--model", type=str, help="The model to benchmark.")
parser.add_argument(
"--order",
type=str,
default="NCHW",
help="The order to evaluate."
)
parser.add_argument(
"--device",
type=str,
default="CPU",
help="device to evaluate on."
)
parser.add_argument(
"--cudnn_ws",
type=int,
help="The cudnn workspace size."
)
parser.add_argument(
"--iterations",
type=int,
default=10,
help="Number of iterations to run the network."
)
parser.add_argument(
"--warmup_iterations",
type=int,
default=10,
help="Number of warm-up iterations before benchmarking."
)
parser.add_argument(
"--forward_only",
action='store_true',
help="If set, only run the forward pass."
)
parser.add_argument(
"--layer_wise_benchmark",
action='store_true',
help="If True, run the layer-wise benchmark as well."
)
parser.add_argument(
"--engine",
type=str,
default="",
help="If set, blindly prefer the given engine(s) for every op.")
parser.add_argument(
"--dump_model",
action='store_true',
help="If True, dump the model prototxts to disk."
)
parser.add_argument("--net_type", type=str, default="simple")
parser.add_argument("--num_workers", type=int, default=2)
parser.add_argument("--use-nvtx", default=False, action='store_true')
parser.add_argument("--htrace_span_log_path", type=str)
return parser
def benchmark(args):
print('Batch size: {}'.format(args.batch_size))
mf = ModelDownloader()
init_net, pred_net, value_info = mf.get_c2_model(args.model)
input_shapes = {k : [args.batch_size] + v[-1][1:] for (k, v) in value_info.items()}
print("input info: {}".format(input_shapes))
external_inputs = {}
for k, v in input_shapes.items():
external_inputs[k] = np.random.randn(*v).astype(np.float32)
if args.device == 'CPU':
device_option = core.DeviceOption(caffe2_pb2.CPU)
elif args.device == 'MKL':
device_option = core.DeviceOption(caffe2_pb2.MKLDNN)
elif args.device == 'IDEEP':
device_option = core.DeviceOption(caffe2_pb2.IDEEP)
else:
raise Exception("Unknown device: {}".format(args.device))
print("Device option: {}, {}".format(args.device, device_option))
pred_net.device_option.CopyFrom(device_option)
for op in pred_net.op:
op.device_option.CopyFrom(device_option)
# Hack to initialized weights into MKL/IDEEP context
workspace.RunNetOnce(init_net)
bb = workspace.Blobs()
weights = {}
for b in bb:
weights[b] = workspace.FetchBlob(b)
for k, v in external_inputs.items():
weights[k] = v
workspace.ResetWorkspace()
with core.DeviceScope(device_option):
for name, blob in weights.items():
#print("{}".format(name))
workspace.FeedBlob(name, blob, device_option)
workspace.CreateNet(pred_net)
start = time.time()
res = workspace.BenchmarkNet(pred_net.name,
args.warmup_iterations,
args.iterations,
args.layer_wise_benchmark)
print("FPS: {:.2f}".format(1/res[0]*1000*args.batch_size))
if __name__ == '__main__':
args, extra_args = GetArgumentParser().parse_known_args()
if (
not args.batch_size or not args.model or not args.order
):
GetArgumentParser().print_help()
benchmark(args)
|