1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
from caffe2.python import core, scope
from caffe2.python.modeling.parameter_sharing import (
ParameterSharing,
)
from caffe2.python.optimizer import AdagradOptimizer, AdamOptimizer
from caffe2.python.layer_test_util import LayersTestCase
class ParameterSharingTest(LayersTestCase):
def test_layer_parameter_name(self):
output_dims = 2
with scope.NameScope('global_scope'):
fc1_output = self.model.FC(
self.model.input_feature_schema.float_features,
output_dims
)
self.assertEquals(self.model.layers[-1].w, 'global_scope/fc/w')
self.assertEquals(fc1_output(), 'global_scope/fc/output')
with scope.NameScope('nested_scope'):
fc2_output = self.model.FC(
fc1_output,
output_dims
)
self.assertEquals(self.model.layers[-1].w,
'global_scope/nested_scope/fc/w')
self.assertEquals(fc2_output(),
'global_scope/nested_scope/fc/output')
fc3_output = self.model.FC(
fc1_output,
output_dims
)
self.assertEquals(self.model.layers[-1].w,
'global_scope/nested_scope/fc_auto_0/w')
self.assertEquals(fc3_output(),
'global_scope/nested_scope/fc_auto_0/output')
def test_layer_shared_parameter_name_different_namescopes(self):
output_dims = 2
with scope.NameScope('global_scope'):
with ParameterSharing({'scope_1': 'scope_0'}):
with scope.NameScope('scope_0'):
fc1_output = self.model.FC(
self.model.input_feature_schema.float_features,
output_dims
)
self.assertEquals(self.model.layers[-1].w,
'global_scope/scope_0/fc/w')
self.assertEquals(fc1_output(),
'global_scope/scope_0/fc/output')
with scope.NameScope('scope_1'):
fc2_output = self.model.FC(
self.model.input_feature_schema.float_features,
output_dims
)
self.assertEquals(self.model.layers[-1].w,
'global_scope/scope_0/fc/w')
self.assertEquals(fc2_output(),
'global_scope/scope_1/fc/output')
def test_layer_shared_parameter_name_within_same_namescope(self):
output_dims = 2
with scope.NameScope('global_scope'):
with ParameterSharing({'fc_auto_0': 'fc'}):
self.model.FC(
self.model.input_feature_schema.float_features,
output_dims
)
self.assertEquals(self.model.layers[-1].w,
'global_scope/fc/w')
self.model.FC(
self.model.input_feature_schema.float_features,
output_dims
)
self.assertEquals(self.model.layers[-1].w,
'global_scope/fc/w')
def test_layer_shared_parameter_name_within_same_namescope_customized_name(self):
output_dims = 2
with scope.NameScope('global_scope'):
with ParameterSharing({'new_fc': 'shared_fc'}):
self.model.FC(
self.model.input_feature_schema.float_features,
output_dims,
name='shared_fc'
)
self.assertEquals(self.model.layers[-1].w,
'global_scope/shared_fc/w')
self.model.FC(
self.model.input_feature_schema.float_features,
output_dims,
name='new_fc'
)
self.assertEquals(self.model.layers[-1].w,
'global_scope/shared_fc/w')
def test_layer_shared_parameter_name_different_shapes(self):
output_dims = 2
with scope.NameScope('global_scope'):
with ParameterSharing({'fc_auto_0': 'fc'}):
self.model.FC(
self.model.input_feature_schema.float_features,
output_dims
)
self.assertEquals(self.model.layers[-1].w,
'global_scope/fc/w')
with self.assertRaisesRegex(ValueError, 'Got inconsistent shapes .*'):
self.model.FC(
self.model.input_feature_schema.float_features,
output_dims + 1
)
def test_layer_duplicated_parameter_init(self):
output_dims = 2
with scope.NameScope('global_scope'):
with ParameterSharing({'new_fc': 'shared_fc'}):
self.model.FC(
self.model.input_feature_schema.float_features,
output_dims,
name='shared_fc'
)
self.model.FC(
self.model.input_feature_schema.float_features,
output_dims,
name='new_fc'
)
train_init_net = core.Net('train_init_net')
train_net = core.Net('train_net')
for layer in self.model.layers:
layer.add_operators(train_net, train_init_net)
op_outputs = []
for op in train_init_net._net.op:
op_outputs.extend(op.output)
# only fill these parameter blobs once
self.assertEquals(
sorted(op_outputs),
['global_scope/shared_fc/b', 'global_scope/shared_fc/w']
)
def test_layer_shared_parameter_optim_validator(self):
"""
This test is to cover the _validate_param_optim function in
layer_model_helper class.
"""
output_dims = 2
adagrad_optim = AdagradOptimizer(
alpha=0.004,
epsilon=0.02,
)
self.model.default_optimizer = adagrad_optim
# the following covers the branch -- optim is None
with scope.NameScope('global_scope_0'):
with ParameterSharing({'scope_1': 'scope_0'}):
with scope.NameScope('scope_0'):
fc1_output = self.model.FC(
self.model.input_feature_schema.float_features,
output_dims,
weight_optim=self.model.NoOptim,
)
with scope.NameScope('scope_1'), self.assertRaises(Exception):
fc2_output = self.model.FC(
self.model.input_feature_schema.float_features,
output_dims
)
# the following covers the branch -- optim is NoOptim
with scope.NameScope('global_scope_1'):
with ParameterSharing({'scope_1': 'scope_0'}):
with scope.NameScope('scope_0'):
fc1_output = self.model.FC(
self.model.input_feature_schema.float_features,
output_dims,
weight_optim=None,
)
with scope.NameScope('scope_1'), self.assertRaises(Exception):
fc2_output = self.model.FC(
self.model.input_feature_schema.float_features,
output_dims,
weight_optim=self.model.NoOptim,
)
# the following covers the branch -- optim is an instance of Optimizer
adagrad_optim_2 = AdagradOptimizer(
alpha=0.005,
epsilon=0.02,
)
adam_optim = AdamOptimizer()
self.model.default_optimizer = adagrad_optim_2
with scope.NameScope('global_scope_2'):
with ParameterSharing({'scope_1': 'scope_0', 'scope_2': 'scope_0'}):
with scope.NameScope('scope_0'):
fc1_output = self.model.FC(
self.model.input_feature_schema.float_features,
output_dims,
weight_optim=None, # it will use adagrad_optim_2
)
with scope.NameScope('scope_1'), self.assertRaises(Exception):
fc2_output = self.model.FC(
self.model.input_feature_schema.float_features,
output_dims,
weight_optim=adagrad_optim,
)
with scope.NameScope('scope_2'), self.assertRaises(Exception):
fc2_output = self.model.FC(
self.model.input_feature_schema.float_features,
output_dims,
weight_optim=adam_optim,
)
|