1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
# @package adaptive_weight
# Module caffe2.fb.python.layers.adaptive_weight
import numpy as np
from caffe2.python import core, schema
from caffe2.python.layers.layers import ModelLayer
from caffe2.python.regularizer import BoundedGradientProjection, LogBarrier
"""
Implementation of adaptive weighting: https://arxiv.org/pdf/1705.07115.pdf
"""
class AdaptiveWeight(ModelLayer):
def __init__(
self,
model,
input_record,
name="adaptive_weight",
optimizer=None,
weights=None,
enable_diagnose=False,
estimation_method="log_std",
pos_optim_method="log_barrier",
reg_lambda=0.1,
**kwargs
):
super(AdaptiveWeight, self).__init__(model, name, input_record, **kwargs)
self.output_schema = schema.Scalar(
np.float32, self.get_next_blob_reference("adaptive_weight")
)
self.data = self.input_record.field_blobs()
self.num = len(self.data)
self.optimizer = optimizer
if weights is not None:
assert len(weights) == self.num
else:
weights = [1. / self.num for _ in range(self.num)]
assert min(weights) > 0, "initial weights must be positive"
self.weights = np.array(weights).astype(np.float32)
self.estimation_method = str(estimation_method).lower()
# used in positivity-constrained parameterization as when the estimation method
# is inv_var, with optimization method being either log barrier, or grad proj
self.pos_optim_method = str(pos_optim_method).lower()
self.reg_lambda = float(reg_lambda)
self.enable_diagnose = enable_diagnose
self.init_func = getattr(self, self.estimation_method + "_init")
self.weight_func = getattr(self, self.estimation_method + "_weight")
self.reg_func = getattr(self, self.estimation_method + "_reg")
self.init_func()
if self.enable_diagnose:
self.weight_i = [
self.get_next_blob_reference("adaptive_weight_%d" % i)
for i in range(self.num)
]
for i in range(self.num):
self.model.add_ad_hoc_plot_blob(self.weight_i[i])
def concat_data(self, net):
reshaped = [net.NextScopedBlob("reshaped_data_%d" % i) for i in range(self.num)]
# coerce shape for single real values
for i in range(self.num):
net.Reshape(
[self.data[i]],
[reshaped[i], net.NextScopedBlob("new_shape_%d" % i)],
shape=[1],
)
concated = net.NextScopedBlob("concated_data")
net.Concat(
reshaped, [concated, net.NextScopedBlob("concated_new_shape")], axis=0
)
return concated
def log_std_init(self):
"""
mu = 2 log sigma, sigma = standard variance
per task objective:
min 1 / 2 / e^mu X + mu / 2
"""
values = np.log(1. / 2. / self.weights)
initializer = (
"GivenTensorFill",
{"values": values, "dtype": core.DataType.FLOAT},
)
self.mu = self.create_param(
param_name="mu",
shape=[self.num],
initializer=initializer,
optimizer=self.optimizer,
)
def log_std_weight(self, x, net, weight):
"""
min 1 / 2 / e^mu X + mu / 2
"""
mu_neg = net.NextScopedBlob("mu_neg")
net.Negative(self.mu, mu_neg)
mu_neg_exp = net.NextScopedBlob("mu_neg_exp")
net.Exp(mu_neg, mu_neg_exp)
net.Scale(mu_neg_exp, weight, scale=0.5)
def log_std_reg(self, net, reg):
net.Scale(self.mu, reg, scale=0.5)
def inv_var_init(self):
"""
k = 1 / variance
per task objective:
min 1 / 2 * k X - 1 / 2 * log k
"""
values = 2. * self.weights
initializer = (
"GivenTensorFill",
{"values": values, "dtype": core.DataType.FLOAT},
)
if self.pos_optim_method == "log_barrier":
regularizer = LogBarrier(reg_lambda=self.reg_lambda)
elif self.pos_optim_method == "pos_grad_proj":
regularizer = BoundedGradientProjection(lb=0, left_open=True)
else:
raise TypeError(
"unknown positivity optimization method: {}".format(
self.pos_optim_method
)
)
self.k = self.create_param(
param_name="k",
shape=[self.num],
initializer=initializer,
optimizer=self.optimizer,
regularizer=regularizer,
)
def inv_var_weight(self, x, net, weight):
net.Scale(self.k, weight, scale=0.5)
def inv_var_reg(self, net, reg):
log_k = net.NextScopedBlob("log_k")
net.Log(self.k, log_k)
net.Scale(log_k, reg, scale=-0.5)
def _add_ops_impl(self, net, enable_diagnose):
x = self.concat_data(net)
weight = net.NextScopedBlob("weight")
reg = net.NextScopedBlob("reg")
weighted_x = net.NextScopedBlob("weighted_x")
weighted_x_add_reg = net.NextScopedBlob("weighted_x_add_reg")
self.weight_func(x, net, weight)
self.reg_func(net, reg)
net.Mul([weight, x], weighted_x)
net.Add([weighted_x, reg], weighted_x_add_reg)
net.SumElements(weighted_x_add_reg, self.output_schema())
if enable_diagnose:
for i in range(self.num):
net.Slice(weight, self.weight_i[i], starts=[i], ends=[i + 1])
def add_ops(self, net):
self._add_ops_impl(net, self.enable_diagnose)
|