File: batch_lr_loss.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (332 lines) | stat: -rw-r--r-- 11,577 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
## @package batch_lr_loss
# Module caffe2.python.layers.batch_lr_loss





from caffe2.python import core, schema
from caffe2.python.layers.layers import (
    ModelLayer,
)
from caffe2.python.layers.tags import (
    Tags
)
import numpy as np


class BatchLRLoss(ModelLayer):
    def __init__(
        self,
        model,
        input_record,
        name='batch_lr_loss',
        average_loss=True,
        jsd_weight=0.0,
        pos_label_target=1.0,
        neg_label_target=0.0,
        homotopy_weighting=False,
        log_D_trick=False,
        unjoined_lr_loss=False,
        uncertainty_penalty=1.0,
        focal_gamma=0.0,
        stop_grad_in_focal_factor=False,
        task_gamma=1.0,
        task_gamma_lb=0.1,
        **kwargs
    ):
        super(BatchLRLoss, self).__init__(model, name, input_record, **kwargs)

        self.average_loss = average_loss

        assert (schema.is_schema_subset(
            schema.Struct(
                ('label', schema.Scalar()),
                ('logit', schema.Scalar())
            ),
            input_record
        ))

        self.jsd_fuse = False
        assert jsd_weight >= 0 and jsd_weight <= 1
        if jsd_weight > 0 or homotopy_weighting:
            assert 'prediction' in input_record
            self.init_weight(jsd_weight, homotopy_weighting)
            self.jsd_fuse = True
        self.homotopy_weighting = homotopy_weighting

        assert pos_label_target <= 1 and pos_label_target >= 0
        assert neg_label_target <= 1 and neg_label_target >= 0
        assert pos_label_target >= neg_label_target
        self.pos_label_target = pos_label_target
        self.neg_label_target = neg_label_target

        assert not (log_D_trick and unjoined_lr_loss)
        self.log_D_trick = log_D_trick
        self.unjoined_lr_loss = unjoined_lr_loss
        assert uncertainty_penalty >= 0
        self.uncertainty_penalty = uncertainty_penalty

        self.tags.update([Tags.EXCLUDE_FROM_PREDICTION])

        self.output_schema = schema.Scalar(
            np.float32,
            self.get_next_blob_reference('output')
        )

        self.focal_gamma = focal_gamma
        self.stop_grad_in_focal_factor = stop_grad_in_focal_factor

        self.apply_exp_decay = False
        if task_gamma < 1.0:
            self.apply_exp_decay = True
            self.task_gamma_cur = self.create_param(
                param_name=('%s_task_gamma_cur' % self.name),
                shape=[1],
                initializer=(
                    'ConstantFill', {
                        'value': 1.0,
                        'dtype': core.DataType.FLOAT
                    }
                ),
                optimizer=self.model.NoOptim,
            )

            self.task_gamma = self.create_param(
                param_name=('%s_task_gamma' % self.name),
                shape=[1],
                initializer=(
                    'ConstantFill', {
                        'value': task_gamma,
                        'dtype': core.DataType.FLOAT
                    }
                ),
                optimizer=self.model.NoOptim,
            )

            self.task_gamma_lb = self.create_param(
                param_name=('%s_task_gamma_lb' % self.name),
                shape=[1],
                initializer=(
                    'ConstantFill', {
                        'value': task_gamma_lb,
                        'dtype': core.DataType.FLOAT
                    }
                ),
                optimizer=self.model.NoOptim,
            )

    def init_weight(self, jsd_weight, homotopy_weighting):
        if homotopy_weighting:
            self.mutex = self.create_param(
                param_name=('%s_mutex' % self.name),
                shape=None,
                initializer=('CreateMutex', ),
                optimizer=self.model.NoOptim,
            )
            self.counter = self.create_param(
                param_name=('%s_counter' % self.name),
                shape=[1],
                initializer=(
                    'ConstantFill', {
                        'value': 0,
                        'dtype': core.DataType.INT64
                    }
                ),
                optimizer=self.model.NoOptim,
            )
            self.xent_weight = self.create_param(
                param_name=('%s_xent_weight' % self.name),
                shape=[1],
                initializer=(
                    'ConstantFill', {
                        'value': 1.,
                        'dtype': core.DataType.FLOAT
                    }
                ),
                optimizer=self.model.NoOptim,
            )
            self.jsd_weight = self.create_param(
                param_name=('%s_jsd_weight' % self.name),
                shape=[1],
                initializer=(
                    'ConstantFill', {
                        'value': 0.,
                        'dtype': core.DataType.FLOAT
                    }
                ),
                optimizer=self.model.NoOptim,
            )
        else:
            self.jsd_weight = self.model.add_global_constant(
                '%s_jsd_weight' % self.name, jsd_weight
            )
            self.xent_weight = self.model.add_global_constant(
                '%s_xent_weight' % self.name, 1. - jsd_weight
            )

    def update_weight(self, net):
        net.AtomicIter([self.mutex, self.counter], [self.counter])
        # iter = 0: lr = 1;
        # iter = 1e6; lr = 0.5^0.1  = 0.93
        # iter = 1e9; lr = 1e-3^0.1 = 0.50
        net.LearningRate([self.counter], [self.xent_weight], base_lr=1.0,
                         policy='inv', gamma=1e-6, power=0.1,)
        net.Sub(
            [self.model.global_constants['ONE'], self.xent_weight],
            [self.jsd_weight]
        )
        return self.xent_weight, self.jsd_weight

    def add_ops(self, net):
        # numerically stable log-softmax with crossentropy
        label = self.input_record.label()
        # mandatory cast to float32
        # self.input_record.label.field_type().base is np.float32 but
        # label type is actually int
        label = net.Cast(
            label,
            net.NextScopedBlob('label_float32'),
            to=core.DataType.FLOAT)
        label = net.ExpandDims(label, net.NextScopedBlob('expanded_label'),
                                dims=[1])
        if self.pos_label_target != 1.0 or self.neg_label_target != 0.0:
            label = net.StumpFunc(
                label,
                net.NextScopedBlob('smoothed_label'),
                threshold=0.5,
                low_value=self.neg_label_target,
                high_value=self.pos_label_target,
            )
        xent = net.SigmoidCrossEntropyWithLogits(
            [self.input_record.logit(), label],
            net.NextScopedBlob('cross_entropy'),
            log_D_trick=self.log_D_trick,
            unjoined_lr_loss=self.unjoined_lr_loss
        )

        if self.focal_gamma != 0:
            label = net.StopGradient(
                [label],
                [net.NextScopedBlob('label_stop_gradient')],
            )

            prediction = self.input_record.prediction()
            # focal loss = (y(1-p) + p(1-y))^gamma * original LR loss
            # y(1-p) + p(1-y) = y + p - 2 * yp
            y_plus_p = net.Add(
                [prediction, label],
                net.NextScopedBlob("y_plus_p"),
            )
            yp = net.Mul([prediction, label], net.NextScopedBlob("yp"))
            two_yp = net.Scale(yp, net.NextScopedBlob("two_yp"), scale=2.0)
            y_plus_p_sub_two_yp = net.Sub(
                [y_plus_p, two_yp], net.NextScopedBlob("y_plus_p_sub_two_yp")
            )
            focal_factor = net.Pow(
                y_plus_p_sub_two_yp,
                net.NextScopedBlob("y_plus_p_sub_two_yp_power"),
                exponent=float(self.focal_gamma),
            )
            if self.stop_grad_in_focal_factor is True:
                focal_factor = net.StopGradient(
                    [focal_factor],
                    [net.NextScopedBlob("focal_factor_stop_gradient")],
                )
            xent = net.Mul(
                [xent, focal_factor], net.NextScopedBlob("focallossxent")
            )

        if self.apply_exp_decay:
            net.Mul(
                [self.task_gamma_cur, self.task_gamma],
                self.task_gamma_cur
            )

            task_gamma_multiplier = net.Max(
                [self.task_gamma_cur, self.task_gamma_lb],
                net.NextScopedBlob("task_gamma_cur_multiplier")
            )

            xent = net.Mul(
                [xent, task_gamma_multiplier], net.NextScopedBlob("expdecayxent")
            )

        # fuse with JSD
        if self.jsd_fuse:
            jsd = net.BernoulliJSD(
                [self.input_record.prediction(), label],
                net.NextScopedBlob('jsd'),
            )
            if self.homotopy_weighting:
                self.update_weight(net)
            loss = net.WeightedSum(
                [xent, self.xent_weight, jsd, self.jsd_weight],
                net.NextScopedBlob('loss'),
            )
        else:
            loss = xent

        if 'log_variance' in self.input_record.fields:
            # mean (0.5 * exp(-s) * loss + 0.5 * penalty * s)
            log_variance_blob = self.input_record.log_variance()

            log_variance_blob = net.ExpandDims(
                log_variance_blob, net.NextScopedBlob('expanded_log_variance'),
                dims=[1]
            )

            neg_log_variance_blob = net.Negative(
                [log_variance_blob],
                net.NextScopedBlob('neg_log_variance')
            )

            # enforce less than 88 to avoid OverflowError
            neg_log_variance_blob = net.Clip(
                [neg_log_variance_blob],
                net.NextScopedBlob('clipped_neg_log_variance'),
                max=88.0
            )

            exp_neg_log_variance_blob = net.Exp(
                [neg_log_variance_blob],
                net.NextScopedBlob('exp_neg_log_variance')
            )

            exp_neg_log_variance_loss_blob = net.Mul(
                [exp_neg_log_variance_blob, loss],
                net.NextScopedBlob('exp_neg_log_variance_loss')
            )

            penalized_uncertainty = net.Scale(
                log_variance_blob, net.NextScopedBlob("penalized_unceratinty"),
                scale=float(self.uncertainty_penalty)
            )

            loss_2x = net.Add(
                [exp_neg_log_variance_loss_blob, penalized_uncertainty],
                net.NextScopedBlob('loss')
            )
            loss = net.Scale(loss_2x, net.NextScopedBlob("loss"), scale=0.5)

        if 'weight' in self.input_record.fields:
            weight_blob = self.input_record.weight()
            if self.input_record.weight.field_type().base != np.float32:
                weight_blob = net.Cast(
                    weight_blob,
                    weight_blob + '_float32',
                    to=core.DataType.FLOAT
                )
            weight_blob = net.StopGradient(
                [weight_blob],
                [net.NextScopedBlob('weight_stop_gradient')],
            )
            loss = net.Mul(
                [loss, weight_blob],
                net.NextScopedBlob('weighted_cross_entropy'),
            )

        if self.average_loss:
            net.AveragedLoss(loss, self.output_schema.field_blobs())
        else:
            net.ReduceFrontSum(loss, self.output_schema.field_blobs())