1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
## @package concat
# Module caffe2.python.layers.concat
from caffe2.python import schema
from caffe2.python.layers.layers import (
ModelLayer,
)
from future.utils import viewitems
import numpy as np
from collections import defaultdict
import logging
logger = logging.getLogger(__name__)
def get_concatenated_feature_to_index(blobs_to_concat):
concat_feature_to_index = defaultdict(list)
start_pos = 0
for scalar in blobs_to_concat:
num_dims = scalar.dtype.shape[0]
if hasattr(scalar, 'metadata') \
and hasattr(scalar.metadata, 'feature_specs') \
and hasattr(scalar.metadata.feature_specs, 'feature_to_index') \
and isinstance(scalar.metadata.feature_specs.feature_to_index, dict): # noqa B950
for k, v in scalar.metadata.feature_specs.feature_to_index.items():
concat_feature_to_index[k].extend([start_pos + vi for vi in v])
start_pos += num_dims
return dict(concat_feature_to_index) if concat_feature_to_index.keys() else None
class Concat(ModelLayer):
"""
Construct Concat layer
Assume that first dimension is batch,
Example:
embedding_dim = 64
input_record = self.new_record(schema.Struct(
('input1', schema.Scalar((np.float32, (embedding_dim, )))),
('input2', schema.Scalar((np.float32, (embedding_dim, )))),
('input3', schema.Scalar((np.float32, (embedding_dim, )))),
))
output = self.model.Concat(input_record)
self.assertEqual(
schema.Scalar((np.float32, ((len(input_record.fields) * embedding_dim, )))),
output
)
# Note that in Concat layer we assume first dimension is batch.
# so input is B * embedding_dim
# add_axis=1 make it B * 1 * embedding_dim
# Concat on axis=1 make it B * N * embedding_dim
output = self.model.Concat(input_record, axis=1, add_axis=1)
self.assertEqual(
schema.Scalar((np.float32, ((len(input_record.fields), embedding_dim)))),
output
)
"""
def __init__(self, model, input_record, axis=1, add_axis=0,
name='concat', **kwargs):
super(Concat, self).__init__(model, name, input_record, **kwargs)
self.axis = axis
self.add_axis = add_axis
assert not (axis == 0 and add_axis == 1), \
"It's not allowed to add axis=0"
assert isinstance(input_record, schema.Struct),\
"Incorrect input type. Expected Struct, but received: {0}".\
format(input_record)
shapes = []
for field_name, field_type in viewitems(input_record.fields):
assert isinstance(field_type, schema.Scalar),\
"Incorrect input type for {}. Expected Scalar, but got: {}".\
format(field_name, field_type)
# Assume that first dimension is batch, so actual axis in shape is
# axis - 1
shape = list(field_type.field_type().shape)
if add_axis:
shape.insert(axis - 1, 1)
assert len(shape) >= axis,\
"Concat expects that limited dimensions of the input tensor"
shapes.append(shape)
logger.info('Concat Layer input shapes: ' + str(shapes))
if axis == 0:
self.output_schema = schema.from_blob_list(
input_record[0],
[self.get_next_blob_reference('output')]
)
return
concat_dim = 0
for shape in shapes:
concat_dim += shape[axis - 1]
shape[axis - 1] = 0
assert shape == shapes[0],\
"Shapes {0} and {1} are not compatible for Concat".\
format(shape, shapes[0])
output_dims = shapes[0]
output_dims[axis - 1] = concat_dim
logger.info('Concat Layer output_dims: ' + str(output_dims))
self.output_schema = schema.Scalar(
(np.float32, output_dims),
self.get_next_blob_reference('output'))
record_to_concat = input_record.fields.values()
concated_feature_to_index = get_concatenated_feature_to_index(
record_to_concat
)
if concated_feature_to_index:
metadata = schema.Metadata(
feature_specs=schema.FeatureSpec(
feature_to_index=concated_feature_to_index
)
)
self.output_schema.set_metadata(metadata)
def add_ops(self, net):
net.Concat(
self.input_record.field_blobs(),
[
self.output_schema.field_blobs()[0],
self.output_schema.field_blobs()[0] + "_concat_dims"
],
axis=self.axis,
add_axis=self.add_axis,
)
|