File: constant_weight.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (44 lines) | stat: -rw-r--r-- 1,208 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# @package constant_weight
# Module caffe2.fb.python.layers.constant_weight





from caffe2.python import schema
from caffe2.python.layers.layers import ModelLayer
import numpy as np


class ConstantWeight(ModelLayer):
    def __init__(
        self,
        model,
        input_record,
        weights=None,
        name='constant_weight',
        **kwargs
    ):
        super(ConstantWeight,
              self).__init__(model, name, input_record, **kwargs)
        self.output_schema = schema.Scalar(
            np.float32, self.get_next_blob_reference('constant_weight')
        )
        self.data = self.input_record.field_blobs()
        self.num = len(self.data)
        weights = (
            weights if weights is not None else
            [1. / self.num for _ in range(self.num)]
        )
        assert len(weights) == self.num
        self.weights = [
            self.model.add_global_constant(
                '%s_weight_%d' % (self.name, i), float(weights[i])
            ) for i in range(self.num)
        ]

    def add_ops(self, net):
        net.WeightedSum(
            [b for x_w_pair in zip(self.data, self.weights) for b in x_w_pair],
            self.output_schema()
        )