File: dropout.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (50 lines) | stat: -rw-r--r-- 1,410 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Module caffe2.python.layers.dropout





from caffe2.python import schema
from caffe2.python.layers.layers import ModelLayer


class Dropout(ModelLayer):

    def __init__(
            self,
            model,
            input_record,
            name='dropout',
            ratio=0.5,
            dropout_for_eval=False,
            **kwargs):

        super(Dropout, self).__init__(model, name, input_record, **kwargs)
        assert isinstance(input_record, schema.Scalar), "Incorrect input type"
        assert (ratio >= 0 and ratio < 1.0), \
            "Expected 0 <= ratio < 1, but got ratio of %s" % ratio

        self.output_schema = input_record.clone_schema()
        self.output_schema.set_value(self.get_next_blob_reference('output'))
        self.dropout_for_eval = dropout_for_eval

        self.ratio = ratio

    def _add_ops(self, net, is_test):
        input_blob = self.input_record.field_blobs()
        output_blobs = self.output_schema.field_blobs() \
                     + [net.NextScopedBlob('d_mask')]

        net.Dropout(input_blob,
                    output_blobs,
                    ratio=self.ratio,
                    is_test=is_test)

    def add_train_ops(self, net):
        self._add_ops(net, is_test=False)

    def add_eval_ops(self, net):
        self._add_ops(net, is_test=(not self.dropout_for_eval))

    def add_ops(self, net):
        self.add_eval_ops(net)