File: fc.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (230 lines) | stat: -rw-r--r-- 9,296 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
## @package fc
# Module caffe2.python.layers.fc





from caffe2.python.helpers.arg_scope import get_current_scope
from caffe2.python import schema
from caffe2.python.layers.layers import ModelLayer
from caffe2.python.layers.sampling_trainable_mixin import SamplingTrainableMixin
import math
import numpy as np


def get_fc_predictor_version(fc_version):
    assert fc_version in ["fp32", "fp16"], (
        "Only support fp32 and fp16 for the fully connected layer "
        "in the predictor net, the provided FC precision is {}".format(fc_version)
    )
    return fc_version


class FC(SamplingTrainableMixin, ModelLayer):

    def __init__(self, model, input_record, output_dims, weight_init=None,
                 bias_init=None, weight_optim=None, bias_optim=None, name='fc',
                 weight_reg=None, bias_reg=None, clip_param=None,
                 max_fc_size=None, axis=1, transposed=False,
                 uniform_weight_init_scale_numerator=1.0,
                 **kwargs):
        super(FC, self).__init__(model, name, input_record, **kwargs)
        assert isinstance(input_record, schema.Scalar), (
            "Incorrect input type {}".format(input_record))
        assert len(input_record.field_types()[0].shape) > 0, (
            "FC expects limited dimensions of the input tensor")
        assert axis >= 1, "axis {} should >= 1.".format(axis)
        self.axis = axis
        input_dims = np.prod(input_record.field_types()[0].shape[axis - 1:])

        assert input_dims > 0, (
            "FC expects input dimensions > 0, got {}".format(input_dims))

        self.clip_args = None
        if (clip_param is not None):
            assert len(clip_param) == 2, (
                'clip_param must be a tuple / list '
                'of length 2 and in the form of (clip_min, clip max)'
            )
            clip_min, clip_max = clip_param
            assert clip_min is not None or clip_max is not None, (
                'clip_min, and clip_max in clip_param cannot both be None'
            )
            assert (
                (clip_min is None or clip_max is None) or clip_min < clip_max
            ), (
                'clip_param = [clip_min, clip_max] must have clip_min < clip_max'
            )
            self.clip_args = {}
            if clip_min is not None:
                self.clip_args['min'] = clip_min
            if clip_max is not None:
                self.clip_args['max'] = clip_max

        if uniform_weight_init_scale_numerator is None:
            uniform_weight_init_scale_numerator = 1.0

        scale = math.sqrt(uniform_weight_init_scale_numerator / input_dims)
        weight_init = weight_init if weight_init else (
            'UniformFill', {'min': -scale, 'max': scale})
        bias_init = bias_init if bias_init else (
            'UniformFill', {'min': -scale, 'max': scale})

        self.output_dim_vec = FC.calculate_fc_output_dims(
            max_fc_size, input_dims, output_dims)

        self.transposed = transposed
        if self.output_dim_vec is None or len(self.output_dim_vec) == 1:
            weight_shape = [input_dims, output_dims] if transposed else [output_dims, input_dims]
            self.w = self.create_param(param_name='w',
                                       shape=weight_shape,
                                       initializer=weight_init,
                                       optimizer=weight_optim,
                                       regularizer=weight_reg)

            self.b = self.create_param(param_name='b',
                                       shape=[output_dims, ],
                                       initializer=bias_init,
                                       optimizer=bias_optim,
                                       regularizer=bias_reg)
        else:
            self.w_vec = []
            self.b_vec = []

            for idx, output_dim in enumerate(self.output_dim_vec):
                weight_shape = [input_dims, output_dim] if transposed else [output_dim, input_dims]
                self.w_vec.append(self.create_param(param_name='w_sub_{}'.format(idx),
                                             shape=weight_shape,
                                             initializer=weight_init,
                                             optimizer=weight_optim,
                                             regularizer=weight_reg))

                self.b_vec.append(self.create_param(param_name='b_sub_{}'.format(idx),
                                             shape=[output_dim, ],
                                             initializer=weight_init,
                                             optimizer=weight_optim,
                                             regularizer=weight_reg))
        if axis == 1:
            output_shape = (output_dims, )
        else:
            output_shape = list(input_record.field_types()[0].shape)[0: axis - 1]
            output_shape = tuple(output_shape + [output_dims])

        self.output_schema = schema.Scalar(
            (np.float32, output_shape),
            self.get_next_blob_reference('output')
        )

    @staticmethod
    def calculate_fc_output_dims(max_fc_size, input_dim, output_dim):

        if not max_fc_size or max_fc_size < 0:
            return None

        assert max_fc_size >= input_dim, "Currently we split along the output " \
            "dimension. So we need max_fc_size >= input_dim. But, max_fc_size: " \
            "{}, input_dim: {}".format(max_fc_size, input_dim)

        output_dim_allowed = int(np.floor(max_fc_size / input_dim))
        num_fc = int(np.floor((output_dim - 1) / output_dim_allowed) + 1)

        output_dim_vec = [output_dim_allowed] * (num_fc - 1)

        output_dim_vec.append(output_dim - sum(output_dim_vec))

        return output_dim_vec

    def _insert_fc_ops(self, net, params, outputs, version):
        """
        Args:
            net: the caffe2 net to insert operator
            params: weight and bias for FC
            outputs: the output blobs
            version: support fp32 and fp16 for now.
        """
        if version == "fp32":
            if self.transposed:
                return net.FCTransposed(
                    self.input_record.field_blobs() + params,
                    outputs,
                    axis=self.axis,
                    **self.kwargs
                )
            else:
                return net.FC(
                    self.input_record.field_blobs() + params,
                    outputs,
                    axis=self.axis,
                    **self.kwargs
                )
        elif version == "fp16":
            return net.FbFCPacked(
                self.input_record.field_blobs() + params,
                outputs,
                axis=self.axis,
                **self.kwargs
            )
        else:
            raise Exception("unsupported FC type version {}".format(version))

    def _add_ops(self, net, params, version):
        """
        Args:
            params : the weight and bias,
                passed by either add_ops or add_train_ops function
            version : fp16 or fp32, might support in8 in the future.
        """
        if self.clip_args is not None:
            clipped_params = [net.NextScopedBlob(
                'clipped_%s' % str(p)) for p in params]
            for p, cp in zip(params, clipped_params):
                net.Clip([p], [cp], **self.clip_args)
            params = clipped_params

        if self.output_dim_vec is None or len(self.output_dim_vec) == 1:
            self._insert_fc_ops(net, params, self.output_schema.field_blobs(), version)
        else:
            w_vec = params[:int(len(params) / 2)]
            b_vec = params[int(len(params) / 2):]

            assert len(w_vec) == len(b_vec)

            output_blob_vec = []

            for i in range(len(self.output_dim_vec)):
                output_blob = net.NextScopedBlob(
                    'output_sub_{}'.format(i))
                insert_ret = self._insert_fc_ops(
                    net, [w_vec[i], b_vec[i]], [output_blob], version
                )
                output_blob_vec.append(insert_ret)
            net.Concat(output_blob_vec,
                       self.output_schema.field_blobs() +
                       [self.output_schema.field_blobs()[0] + "_concat_dims"])

    def add_ops(self, net):
        """Both the predict net and the eval net will call this function
        """
        version_info = get_current_scope().get(
            get_fc_predictor_version.__name__, {'fc_version': 'fp32'}
        )
        predictor_fc_fp_version = version_info['fc_version']
        self._add_ops(net, self.param_blobs, predictor_fc_fp_version)

    def add_train_ops(self, net):
        # use the train_param_blobs to be consistent with the SamplingTrain unittest
        self._add_ops(net, self.train_param_blobs, "fp32")

    def get_fp16_compatible_parameters(self):
        if self.output_dim_vec is None or len(self.output_dim_vec) == 1:
            return [self.w]
        else:
            return self.w_vec

    @property
    def param_blobs(self):
        if self.output_dim_vec is None or len(self.output_dim_vec) == 1:
            return [self.w, self.b]
        else:
            return self.w_vec + self.b_vec