1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
## @package fc
# Module caffe2.python.layers.fc
from caffe2.python.helpers.arg_scope import get_current_scope
from caffe2.python import schema
from caffe2.python.layers.layers import ModelLayer
from caffe2.python.layers.sampling_trainable_mixin import SamplingTrainableMixin
import math
import numpy as np
def get_fc_predictor_version(fc_version):
assert fc_version in ["fp32", "fp16"], (
"Only support fp32 and fp16 for the fully connected layer "
"in the predictor net, the provided FC precision is {}".format(fc_version)
)
return fc_version
class FC(SamplingTrainableMixin, ModelLayer):
def __init__(self, model, input_record, output_dims, weight_init=None,
bias_init=None, weight_optim=None, bias_optim=None, name='fc',
weight_reg=None, bias_reg=None, clip_param=None,
max_fc_size=None, axis=1, transposed=False,
uniform_weight_init_scale_numerator=1.0,
**kwargs):
super(FC, self).__init__(model, name, input_record, **kwargs)
assert isinstance(input_record, schema.Scalar), (
"Incorrect input type {}".format(input_record))
assert len(input_record.field_types()[0].shape) > 0, (
"FC expects limited dimensions of the input tensor")
assert axis >= 1, "axis {} should >= 1.".format(axis)
self.axis = axis
input_dims = np.prod(input_record.field_types()[0].shape[axis - 1:])
assert input_dims > 0, (
"FC expects input dimensions > 0, got {}".format(input_dims))
self.clip_args = None
if (clip_param is not None):
assert len(clip_param) == 2, (
'clip_param must be a tuple / list '
'of length 2 and in the form of (clip_min, clip max)'
)
clip_min, clip_max = clip_param
assert clip_min is not None or clip_max is not None, (
'clip_min, and clip_max in clip_param cannot both be None'
)
assert (
(clip_min is None or clip_max is None) or clip_min < clip_max
), (
'clip_param = [clip_min, clip_max] must have clip_min < clip_max'
)
self.clip_args = {}
if clip_min is not None:
self.clip_args['min'] = clip_min
if clip_max is not None:
self.clip_args['max'] = clip_max
if uniform_weight_init_scale_numerator is None:
uniform_weight_init_scale_numerator = 1.0
scale = math.sqrt(uniform_weight_init_scale_numerator / input_dims)
weight_init = weight_init if weight_init else (
'UniformFill', {'min': -scale, 'max': scale})
bias_init = bias_init if bias_init else (
'UniformFill', {'min': -scale, 'max': scale})
self.output_dim_vec = FC.calculate_fc_output_dims(
max_fc_size, input_dims, output_dims)
self.transposed = transposed
if self.output_dim_vec is None or len(self.output_dim_vec) == 1:
weight_shape = [input_dims, output_dims] if transposed else [output_dims, input_dims]
self.w = self.create_param(param_name='w',
shape=weight_shape,
initializer=weight_init,
optimizer=weight_optim,
regularizer=weight_reg)
self.b = self.create_param(param_name='b',
shape=[output_dims, ],
initializer=bias_init,
optimizer=bias_optim,
regularizer=bias_reg)
else:
self.w_vec = []
self.b_vec = []
for idx, output_dim in enumerate(self.output_dim_vec):
weight_shape = [input_dims, output_dim] if transposed else [output_dim, input_dims]
self.w_vec.append(self.create_param(param_name='w_sub_{}'.format(idx),
shape=weight_shape,
initializer=weight_init,
optimizer=weight_optim,
regularizer=weight_reg))
self.b_vec.append(self.create_param(param_name='b_sub_{}'.format(idx),
shape=[output_dim, ],
initializer=weight_init,
optimizer=weight_optim,
regularizer=weight_reg))
if axis == 1:
output_shape = (output_dims, )
else:
output_shape = list(input_record.field_types()[0].shape)[0: axis - 1]
output_shape = tuple(output_shape + [output_dims])
self.output_schema = schema.Scalar(
(np.float32, output_shape),
self.get_next_blob_reference('output')
)
@staticmethod
def calculate_fc_output_dims(max_fc_size, input_dim, output_dim):
if not max_fc_size or max_fc_size < 0:
return None
assert max_fc_size >= input_dim, "Currently we split along the output " \
"dimension. So we need max_fc_size >= input_dim. But, max_fc_size: " \
"{}, input_dim: {}".format(max_fc_size, input_dim)
output_dim_allowed = int(np.floor(max_fc_size / input_dim))
num_fc = int(np.floor((output_dim - 1) / output_dim_allowed) + 1)
output_dim_vec = [output_dim_allowed] * (num_fc - 1)
output_dim_vec.append(output_dim - sum(output_dim_vec))
return output_dim_vec
def _insert_fc_ops(self, net, params, outputs, version):
"""
Args:
net: the caffe2 net to insert operator
params: weight and bias for FC
outputs: the output blobs
version: support fp32 and fp16 for now.
"""
if version == "fp32":
if self.transposed:
return net.FCTransposed(
self.input_record.field_blobs() + params,
outputs,
axis=self.axis,
**self.kwargs
)
else:
return net.FC(
self.input_record.field_blobs() + params,
outputs,
axis=self.axis,
**self.kwargs
)
elif version == "fp16":
return net.FbFCPacked(
self.input_record.field_blobs() + params,
outputs,
axis=self.axis,
**self.kwargs
)
else:
raise Exception("unsupported FC type version {}".format(version))
def _add_ops(self, net, params, version):
"""
Args:
params : the weight and bias,
passed by either add_ops or add_train_ops function
version : fp16 or fp32, might support in8 in the future.
"""
if self.clip_args is not None:
clipped_params = [net.NextScopedBlob(
'clipped_%s' % str(p)) for p in params]
for p, cp in zip(params, clipped_params):
net.Clip([p], [cp], **self.clip_args)
params = clipped_params
if self.output_dim_vec is None or len(self.output_dim_vec) == 1:
self._insert_fc_ops(net, params, self.output_schema.field_blobs(), version)
else:
w_vec = params[:int(len(params) / 2)]
b_vec = params[int(len(params) / 2):]
assert len(w_vec) == len(b_vec)
output_blob_vec = []
for i in range(len(self.output_dim_vec)):
output_blob = net.NextScopedBlob(
'output_sub_{}'.format(i))
insert_ret = self._insert_fc_ops(
net, [w_vec[i], b_vec[i]], [output_blob], version
)
output_blob_vec.append(insert_ret)
net.Concat(output_blob_vec,
self.output_schema.field_blobs() +
[self.output_schema.field_blobs()[0] + "_concat_dims"])
def add_ops(self, net):
"""Both the predict net and the eval net will call this function
"""
version_info = get_current_scope().get(
get_fc_predictor_version.__name__, {'fc_version': 'fp32'}
)
predictor_fc_fp_version = version_info['fc_version']
self._add_ops(net, self.param_blobs, predictor_fc_fp_version)
def add_train_ops(self, net):
# use the train_param_blobs to be consistent with the SamplingTrain unittest
self._add_ops(net, self.train_param_blobs, "fp32")
def get_fp16_compatible_parameters(self):
if self.output_dim_vec is None or len(self.output_dim_vec) == 1:
return [self.w]
else:
return self.w_vec
@property
def param_blobs(self):
if self.output_dim_vec is None or len(self.output_dim_vec) == 1:
return [self.w, self.b]
else:
return self.w_vec + self.b_vec
|