1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
# @package sparse_to_dense
# Module caffe2.python.layers.sparse_to_dense
from collections import defaultdict
import numpy as np
from caffe2.python import schema
from caffe2.python.layers.layers import AccessedFeatures, ModelLayer
class FeatureSparseToDense(ModelLayer):
def __init__(
self,
model,
input_record,
input_specs,
name="feature_sparse_to_dense",
default_dense_value=None,
**kwargs
):
"""
`input_specs` follows the format of FeatureSpec from schema. To be more
precise it's a namedtuple that should have:
'feature_type', 'feature_names', 'feature_ids'
Default_dense_value can only be 0.0 or float("NaN"). Any input that isn't
None will be NaN.
"""
super(FeatureSparseToDense, self).__init__(model, name, input_record, **kwargs)
if default_dense_value is None:
default_dense_value = 0.0
default_dense_value = float(default_dense_value)
assert (
np.isnan(default_dense_value) or default_dense_value == 0.0
), "default_dense_value can only be 0.0 or NaN"
self.input_specs = input_specs
self.default_float_value = (
model.global_constants["NAN"]
if np.isnan(default_dense_value)
else model.global_constants["ZERO"]
)
self.zero_range = model.global_constants["ZERO_RANGE"]
outputs = []
for field, feature_specs in self.input_specs:
assert len(feature_specs.feature_names) == len(feature_specs.feature_ids)
if feature_specs.feature_type == "FLOAT":
outputs.append(
(
field,
schema.Scalar(
(np.float32, (len(feature_specs.feature_ids),)),
self.get_next_blob_reference(field + "_output"),
),
)
)
elif feature_specs.feature_type == "ID_LIST":
outputs.append(
(
field,
schema.Struct(
(
"ranges",
schema.Scalar(
(np.int32, (len(feature_specs.feature_ids), 2)),
self.get_next_blob_reference(field + "_ranges"),
),
),
(
"values",
schema.Scalar(
np.int64,
self.get_next_blob_reference(field + "_values"),
),
),
),
)
)
elif feature_specs.feature_type == "ID_SCORE_LIST":
outputs.append(
(
field,
schema.Struct(
(
"ranges",
schema.Scalar(
(np.int32, (len(feature_specs.feature_ids), 2)),
self.get_next_blob_reference(field + "_ranges"),
),
),
(
"ids",
schema.Scalar(
np.int64,
self.get_next_blob_reference(field + "_ids"),
),
),
(
"scores",
schema.Scalar(
np.float32,
self.get_next_blob_reference(field + "_scores"),
),
),
),
)
)
elif feature_specs.feature_type == "EMBEDDING":
# We don't know dimensions of embeddings in input data.
# Even though they should match dimensions from feature config,
# we keep ranges blob to check input data later.
outputs.append(
(
field,
schema.Struct(
(
"ranges",
schema.Scalar(
(np.int32, (len(feature_specs.feature_ids), 2)),
self.get_next_blob_reference(field + "_ranges"),
),
),
(
"values",
schema.Scalar(
np.float32,
self.get_next_blob_reference(field + "_values"),
),
),
),
)
)
elif feature_specs.feature_type == "GENERIC_FEATURE":
# We don't know dimensions of embeddings in input data.
# Even though they should match dimensions from feature config,
# we keep ranges blob to check input data later.
# Currently this schema with ranges and values is only for
# generic type enum 1. If new types are implemented, we need to
# modify the ParseGeneric operator, and this part accordingly
outputs.append(
(
field,
schema.Struct(
(
"ranges",
schema.Scalar(
(np.int32, (len(feature_specs.feature_ids), 2)),
self.get_next_blob_reference(field + "_ranges"),
),
),
(
"values",
schema.Scalar(
np.float32,
self.get_next_blob_reference(field + "_values"),
),
),
),
)
)
else:
raise TypeError(
"Unsupported input type: {0}".format(feature_specs.feature_type)
)
# TODO(amalevich): This schema is producing ranges. And thus if there is
# something using it it should support ranges as well. It might be
# confusing, if we don't add better support for ranges/have it as a
# first layer
self.output_schema = schema.Struct(*outputs)
# TODO(amalevich): Consider moving this data to schema, instead
# Structs doesn't support attaching metadata to them and clonning
# will break things badly, but this is the most elegant way to pass
# this info around. Should we change it or it'll be too much work and
# not worse it?
for field, feature_specs in input_specs:
schema.attach_metadata_to_scalars(
self.output_schema[field], schema.Metadata(feature_specs=feature_specs)
)
# Add operators to all types that need to be densified
def add_ops(self, net):
record = self.input_record
for field, feature_specs in self.input_specs:
if feature_specs.feature_type == "FLOAT":
net.SparseToDenseMask(
[
record[field].keys(),
record[field].values(),
self.default_float_value,
record[field].lengths(),
],
[self.output_schema[field]()],
mask=feature_specs.feature_ids,
)
elif feature_specs.feature_type == "ID_LIST":
id_list_ranges = net.LengthsToRanges(
record[field].values.lengths(), net.NextScopedBlob("id_list_ranges")
)
net.SparseToDenseMask(
[
record[field].keys(),
id_list_ranges,
self.zero_range,
record[field].lengths(),
],
self.output_schema[field].ranges(),
mask=feature_specs.feature_ids,
)
# Alias helps to enforce the fact that all SparseToDense calls
# produce new blobs.
# Reusing blob names might result in some weird consequences
# during the delivery time, when content of the blobs is
# generated based on the inputSpecs.
net.Alias(
record[field].values.items(), self.output_schema[field].values()
)
elif feature_specs.feature_type == "ID_SCORE_LIST":
# TODO: merge this to the case above?
id_list_ranges = net.LengthsToRanges(
record[field].values.lengths(),
net.NextScopedBlob("id_score_list_ranges"),
)
net.SparseToDenseMask(
[
record[field].keys(),
id_list_ranges,
self.zero_range,
record[field].lengths(),
],
self.output_schema[field].ranges(),
mask=feature_specs.feature_ids,
)
# Alias helps to enforce the fact that all SparseToDense calls
# produce new blobs.
# Reusing blob names might result in some weird consequences
# during the delivery time, when content of the blobs is
# generated based on the inputSpecs.
net.Alias(record[field].values.keys(), self.output_schema[field].ids())
net.Alias(
record[field].values.values(), self.output_schema[field].scores()
)
elif feature_specs.feature_type == "EMBEDDING":
ranges = net.LengthsToRanges(
record[field].values.lengths(),
net.NextScopedBlob("embeddings_ranges"),
)
net.SparseToDenseMask(
[
record[field].keys(),
ranges,
self.zero_range,
record[field].lengths(),
],
self.output_schema[field].ranges(),
mask=feature_specs.feature_ids,
)
# Alias helps to enforce the fact that all SparseToDense calls
# produce new blobs.
# Reusing blob names might result in some weird consequences
# during the delivery time, when content of the blobs is
# generated based on the inputSpecs.
net.Alias(
record[field].values.items(), self.output_schema[field].values()
)
elif feature_specs.feature_type == "GENERIC_FEATURE":
(
feature_lengths_blob,
feature_ids_blob,
value_lengths_blob,
value_values_blob,
) = net.ParseGeneric(
[record[field]()],
["feature_lengths", "feature_ids", "value_lengths", "value_values"],
feature_type_enum=1,
)
# Currently our implementation only supports
# generic type enum 1. If new types are implemented, we need to
# modify the ParseGeneric operator, the schema above,
# and this part accordingly to parse the generic feature strings
# into input_record
ranges = net.LengthsToRanges(
value_lengths_blob, net.NextScopedBlob("generics_ranges")
)
net.SparseToDenseMask(
[feature_ids_blob, ranges, self.zero_range, feature_lengths_blob],
self.output_schema[field].ranges(),
mask=feature_specs.feature_ids,
)
# Alias helps to enforce the fact that all SparseToDense calls
# produce new blobs.
# Reusing blob names might result in some weird consequences
# during the delivery time, when content of the blobs is
# generated based on the inputSpecs.
net.Alias(value_values_blob, self.output_schema[field].values())
def get_metadata(self):
metadata = []
for field, feature_specs in self.input_specs:
metadata.append(
(
{
"type": feature_specs.feature_type,
"names": feature_specs.feature_names,
"ids": feature_specs.feature_ids,
},
self.output_schema[field].field_blobs(),
self.output_schema[field].field_types(),
)
)
if feature_specs.feature_type == "FLOAT":
metadata[-1][0]["cardinality"] = 1
return metadata
def get_accessed_features(self):
accessed_features = defaultdict(list)
# The features that are accessed are just those features that appear in
# the input specs
for field, feature_specs in self.input_specs:
accessed_features[field].append(
AccessedFeatures(
feature_specs.feature_type, set(feature_specs.feature_ids)
)
)
return accessed_features
|