1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
|
## @package layers
# Module caffe2.python.layers.layers
import logging
from collections import namedtuple
import numpy as np
from caffe2.proto import caffe2_pb2
from caffe2.python import core, schema, scope, utils, workspace
from caffe2.python.layers.tags import TagContext
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# Some types to simplify descriptions of things traveling between ops
IdList = schema.List(np.int64)
IdScoreList = schema.Map(np.int64, np.float32)
IdListWithEvicted = schema.ListWithEvicted(np.int64)
IdScoreListWithEvicted = schema.MapWithEvicted(np.int64, np.float32)
def almost_equal_schemas(
record,
original_schema,
check_field_names=True,
check_field_types=True,
check_field_metas=False,
):
if original_schema == IdList:
return schema.equal_schemas(
record,
IdList,
check_field_names=check_field_names,
check_field_types=check_field_types,
check_field_metas=check_field_metas,
) or schema.equal_schemas(
record,
IdListWithEvicted,
check_field_names=check_field_names,
check_field_types=check_field_types,
check_field_metas=check_field_metas,
)
elif original_schema == IdScoreList:
return schema.equal_schemas(
record,
IdScoreList,
check_field_names=check_field_names,
check_field_types=check_field_types,
check_field_metas=check_field_metas,
) or schema.equal_schemas(
record,
IdScoreListWithEvicted,
check_field_names=check_field_names,
check_field_types=check_field_types,
check_field_metas=check_field_metas,
)
else:
return schema.equal_schemas(record, original_schema)
def get_key(record):
if almost_equal_schemas(record, IdList):
key = "values"
elif almost_equal_schemas(
record, IdScoreList, check_field_types=False
):
key = "values:keys"
else:
raise NotImplementedError("Not implemented for {}".format(record))
assert record[key].metadata is not None, "Blob {} doesn't have metadata".format(
str(record[key]())
)
return record[key]
def get_categorical_limit(record):
key = get_key(record)
return key.metadata.categorical_limit
def get_avg_length(record):
return record["lengths"].metadata.expected_value
def set_request_only(field):
for f in field.all_scalars():
categorical_limit, expected_value = None, None
if not f.metadata:
feature_specs = schema.FeatureSpec(feature_is_request_only=True)
elif not f.metadata.feature_specs:
categorical_limit = f.metadata.categorical_limit
expected_value = f.metadata.expected_value
feature_specs = schema.FeatureSpec(feature_is_request_only=True)
else:
categorical_limit = f.metadata.categorical_limit
expected_value = f.metadata.expected_value
feature_specs = schema.FeatureSpec(
feature_type=f.metadata.feature_specs.feature_type,
feature_names=f.metadata.feature_specs.feature_names,
feature_ids=f.metadata.feature_specs.feature_ids,
feature_is_request_only=True,
desired_hash_size=f.metadata.feature_specs.desired_hash_size,
)
# make sure not to set categorical_limit for a non-integer field
if not np.issubdtype(f.field_type(), np.integer):
assert (
categorical_limit is None
), "categorical_limit shouldn't be set for no-integer field"
f.set_metadata(
schema.Metadata(
categorical_limit=categorical_limit,
expected_value=expected_value,
feature_specs=feature_specs,
)
)
class InstantiationContext(object):
"""
List of contexts where layer could be instantitated
"""
# The layers support this context will accumulate predictions, labels,
# weights. The accumulated data can later be used to compute
# calibration or for other
# purpose.
ACCUMULATE_PRED = "accumulate_pred"
EVAL = "eval"
PREDICTION = "prediction"
TRAINING = "training"
_LAYER_REGISTRY = {}
def register_layer(name, layer):
assert name not in _LAYER_REGISTRY, "{0} already exists".format(name)
_LAYER_REGISTRY[name] = layer
def layer_exists(name):
return name in _LAYER_REGISTRY
def get_layer_class(name):
return _LAYER_REGISTRY[name]
def create_layer(layer_name, *args, **kwargs):
return _LAYER_REGISTRY[layer_name](*args, **kwargs)
LayerPsParam = namedtuple("LayerPsParam", ["sparse_key", "average_length"])
class LayerParameter(object):
def __init__(
self,
parameter=None,
optimizer=None,
initializer=None,
ps_param=None,
regularizer=None,
):
assert isinstance(
parameter, core.BlobReference
), "expect {0} to be a blob reference".format(str(parameter))
# need to put the following line (shape) before initialier
# shape will be updated once initializer is (re)set
self._shape = None
self.parameter = parameter
self.optimizer = optimizer
self.initializer = initializer
self.ps_param = ps_param
self.regularizer = regularizer
@property
def initializer(self):
return self._initializer
@initializer.setter
def initializer(self, op):
assert op is None or core.IsOperator(
getattr(op, "type", None)
), "initializer expects an operator, got type: {}".format(type(op))
self._initializer = op
if op is not None:
self.shape = self._infer_shape_from_initializer()
@property
def shape(self):
return self._shape
@shape.setter
def shape(self, shape):
assert self.shape is None or self.shape == shape, (
"inconsistent shape for layer parameter:"
" {}, expect: {}, but got {}".format(self, self.shape, shape)
)
self._shape = shape
def _infer_shape_from_initializer(self):
for arg in self.initializer.arg:
if arg.name == "shape":
return list(arg.ints)
with workspace.WorkspaceGuard("model_init_by_loading_params"):
try:
net = core.Net("shape_checker")
net._net.op.extend([self.initializer])
shape_blob = net.NextScopedBlob(self.parameter + "_shape")
net.Shape([self.parameter], shape_blob)
workspace.RunNetOnce(net)
shape = workspace.FetchBlob(shape_blob).tolist()
# ResetWorkspace to save memory
workspace.ResetWorkspace()
return shape
except RuntimeError as exp:
logger.warning(
"Cannot infer the shape of blob {} from operator {}: {}".format(
self.parameter, self.initializer.type, exp
)
)
workspace.ResetWorkspace()
return None
def __str__(self):
return str(self.parameter)
def is_request_only_scalar(scalar):
if len(scalar.field_metadata()) == 0:
return False
for metadata in scalar.field_metadata():
if not (
metadata
and metadata.feature_specs
and getattr(metadata.feature_specs, "feature_is_request_only", False)
):
return False
return True
# Contains features accessed in a model layer of a given type
# `type`: A string representing the kind of feature, consistent with FeatureSpec
# `ids`: A set of feature IDs that are accessed in the model layer
AccessedFeatures = namedtuple("AccessedFeatures", ["type", "ids"])
class ModelLayer(object):
def __init__(
self,
model,
prefix,
input_record,
predict_input_record_fields=None,
tags=None,
**kwargs
):
"""
Base class for model layers. Layer is an abstraction that allows to
provide model description in terms of meta-operators, where each of the
meta-operators can have different implementations for training,
evaluation and prediction, that are instantiated later. As an example
SampledSoftmax can do something related to sampling depending on
supervision during the training and just apply softmax if it's used for
prediction/evaluation.
All inputs/outputs from layers are represented as a record (instance of
schema bounded to blobs) and are accessible through input_record and
output_schema. If Layer needs to have only a subset of inputs/provides
subset of outputs during the inference - it should provide
predict_input_record and predict_output_schema correspondingly (those
records are expected to be a subset of input_record/output_schema).
Each layer has a list of Tags associated with it, that depends on
current context and arguments. It's possible to use those tags during
the instantiation time.
"""
self.name = model.next_layer_name(prefix)
self.model = model
self.kwargs = kwargs
self._input_record = input_record
if predict_input_record_fields:
if not isinstance(predict_input_record_fields, list):
predict_input_record_fields = [predict_input_record_fields]
self._predict_input_record = self._input_record[predict_input_record_fields]
else:
self._predict_input_record = None
self.request_only = True
if len(input_record.all_scalars()) == 0:
self.request_only = False
for scalar in input_record.all_scalars():
if not is_request_only_scalar(scalar):
self.request_only = False
break
self.precomputation_request_only = False
self.precomputation_object_only = False
self._output_schema = None
self._predict_output_schema = None
self.eval_output_schema = None
self.tags = set(tags or [])
self.tags.update(TagContext.current().tags)
self.params = []
self._export_output_for_metrics = False
self._export_params_for_metrics = False
def get_type(self):
return self.__class__.__name__
def _check_output_schema(self):
assert self._output_schema is not None, "Schema is not initialized"
assert self._predict_output_schema is None or schema.is_schema_subset(
self._predict_output_schema, self._output_schema
), "predict_output_schema is not a subset of the output_schema"
@property
def predict_input_record(self):
return self._predict_input_record or self._input_record
@property
def input_record(self):
return self._input_record
@property
def predict_output_schema(self):
self._check_output_schema()
return self._predict_output_schema or self._output_schema
@predict_output_schema.setter
def predict_output_schema(self, output_schema):
assert self._predict_output_schema is None
self._predict_output_schema = output_schema
@property
def output_schema(self):
if self.request_only:
set_request_only(self._output_schema)
self._check_output_schema()
return self._output_schema
@output_schema.setter
def output_schema(self, output_schema):
assert self._output_schema is None
self._output_schema = output_schema
def get_parameters(self):
return self.params
def get_fp16_compatible_parameters(self):
"""Return a subset of parameters which can be converted to fp16"""
return []
def get_memory_usage(self):
return 0
def get_accessed_features(self):
"""
Return a map from field to list of AccessedFeatures, the map should
contain all features accessed in the model layer
"""
return {}
def add_init_params(self, init_net):
"""
Adds layer initialization operators to passed net.
"""
for param in self.params:
# TODO(amalevich): Either return back to lambdas, that add
# all params (looks a bit safer and breaking less
# abstractions) or extend Net interface to this type of
# operations better
# TODO(xlwang) init_net._net.op has type google.protobuf.\
# internal.containers.RepeatedCompositeFieldContainer, but
# the version of protobuf in fbcode does not support append
# so extend is used
init_op = param.initializer
current_device_scope = scope.CurrentDeviceScope()
if not init_op:
continue
if not init_op.HasField("device_option") and current_device_scope:
init_op = caffe2_pb2.OperatorDef()
init_op.CopyFrom(param.initializer)
init_op.device_option.CopyFrom(current_device_scope)
# do not add duplicated init ops
if any(
utils.OpAlmostEqual(op, init_op, "debug_info")
for op in init_net._net.op
):
continue
init_net._net.op.extend([init_op])
def create_param(
self, param_name, shape, initializer, optimizer, ps_param=None, regularizer=None
):
with scope.NameScope(self.name, reset=True):
param = self.model.create_param(
param_name=param_name,
shape=shape,
initializer=initializer,
optimizer=optimizer,
ps_param=ps_param,
regularizer=regularizer,
)
# make sure we don't share parameters in the same layer
assert all(param.parameter != p.parameter for p in self.params)
self.params.append(param)
return param.parameter
def get_next_blob_reference(self, name):
with scope.NameScope(self.name, reset=True):
return self.model.net.NextScopedBlob(name)
def add_operators(self, net, init_net=None, context=InstantiationContext.TRAINING):
"""
Adds layer trainig or initialization operators to the passed in net.
init_net can be None and can be called independently from add_init_params
"""
# Namescope below should warranty that all intermediate blobs will be
# assiciated with the layer that produces them
with scope.NameScope(self.name):
if context not in {
InstantiationContext.PREDICTION,
InstantiationContext.EVAL,
InstantiationContext.ACCUMULATE_PRED,
}:
assert init_net, "Only prediction and eval context don't need init_net"
if init_net:
self.add_init_params(init_net)
if context == InstantiationContext.TRAINING:
self.add_train_ops(net)
elif context == InstantiationContext.EVAL:
self.add_eval_ops(net)
elif context == InstantiationContext.ACCUMULATE_PRED:
self.add_ops_to_accumulate_pred(net)
else:
self.add_ops(net)
if (
context in {InstantiationContext.TRAINING, InstantiationContext.EVAL}
and self._export_params_for_metrics
):
self.add_param_copy_operators(net)
def add_ops(self, net):
# Predict layer implementation.
raise NotImplementedError
def add_eval_ops(self, net):
# Default eval layer implementation is completely matching
# predict layer implementation.
self.add_ops(net)
def add_train_ops(self, net):
# Default train layer implementation is completely matching
# eval layer implementation.
self.add_eval_ops(net)
def add_ops_to_accumulate_pred(self, net):
# This adds operators to accumulate predictions/labels/weights. The
# accumulated data can later be used to compute calibration or for other
# purpose. Default layer implementation is completely matching eval
# layer implementation.
self.add_eval_ops(net)
def add_param_copy_operators(self, net):
for param in self.params:
param_copy_ref = self.model.metrics_schema[str(param.parameter)]
net.Copy([param.parameter], param_copy_ref.field_blobs())
def export_output_for_metrics(self):
self._export_output_for_metrics = True
# Export output of the layer directly
export_name = self.name + "/output"
self.model.add_metric_field(export_name, self.output_schema)
def export_params_for_metrics(self):
self._export_params_for_metrics = True
# Export copies of parameters
for param in self.params:
param_copy_ref = self.get_next_blob_reference(
str(param).split("/")[-1] + "_copy"
)
self.model.add_metric_field(str(param.parameter), param_copy_ref)
|