File: sparse_lookup.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (557 lines) | stat: -rw-r--r-- 22,170 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
## @package sparse_lookup
# Module caffe2.python.layers.sparse_lookup





from caffe2.python.optimizer import FP16_ENGINES, Optimizer
from caffe2.python.helpers.arg_scope import get_current_scope
from caffe2.python import schema
from caffe2.python.layers.layers import (
    get_categorical_limit,
    get_key,
    IdList,
    IdScoreList,
    IdListWithEvicted,
    IdScoreListWithEvicted,
    LayerPsParam,
    ModelLayer,
    almost_equal_schemas,
)
import collections
import functools
import logging
import math
import numpy as np
import operator

logger = logging.getLogger(__name__)


def get_trainer_version_based_on_optim(optim_def):
    if isinstance(optim_def, Optimizer) and hasattr(optim_def, "engine"):
        logger.info(
            "Attempting to set trainer version for engine {}".format(optim_def.engine)
        )
        if optim_def.engine in FP16_ENGINES:
            logger.info("Setting FP16 trainer for engine {}".format(optim_def.engine))
            return "fp16"
        else:
            logger.info("Setting FP32 trainer for engine {}".format(optim_def.engine))
            return "fp32"
    else:
        return "fp32"


def get_sparse_lookup_predictor_version(
    version,
    blob_size=None,
    min_blob_size_4bits=None,
    embedding_dim=None,
    sparse_feature_name=None,
):
    assert version in {
        'fp32', 'fp16', 'uint8rowwise', 'fused_uint8rowwise', 'fused_uint4rowwise'
    }, "Unexpected version of sparse_lookup layer {0}".format(version)
    if version == 'fused_uint4rowwise':
        if (
            blob_size is not None
            and min_blob_size_4bits is not None
            and embedding_dim is not None
        ):
            if blob_size < min_blob_size_4bits:
                logger.info(
                    "{} fall back to uint8 because lookup table size {} < min_blob_size_4bits {}".format(
                        sparse_feature_name,
                        blob_size,
                        min_blob_size_4bits,
                    )
                )
                version = 'fused_uint8rowwise'

            if embedding_dim % 2 == 1:
                logger.info(
                    "{} fall back to uint8 because lookup table dimension {} is not divisible by 2".format(
                        sparse_feature_name, embedding_dim
                    )
                )
                version = 'fused_uint8rowwise'
        else:
            raise ValueError(
                (
                    "When 4 bit quantization is enabled for {}, "
                    "(i.e., Sparse lookup predictor version:{}), "
                    "requires arguments blob_size:{}, "
                    "min_blob_size_4bits:{}, embedding_dim:{}"
                ).format(
                    sparse_feature_name,
                    version,
                    blob_size,
                    min_blob_size_4bits,
                    embedding_dim
                )
            )
    return version


def get_sparse_lookup_trainer_version(version):
    assert version in {'fp32', 'fp16'},\
        "Unexpected version of sparse_lookup layer {0}".format(version)
    return version

def _is_id_list(input_record):
    return almost_equal_schemas(input_record, IdList)


def _is_id_score_list(input_record):
    return almost_equal_schemas(input_record,
                                IdScoreList,
                                check_field_types=False)


class SparseLookup(ModelLayer):
    _id_list_supported_reducers = [
        'LogMeanExp', 'LogSumExp', 'Max', 'Mean', 'Sum',
        'WeightedSum', 'WeightedMean', 'Sqrt', 'None']

    _id_score_list_supported_reducers = [
        'PositionWeighted', 'RecencyWeighted', 'Mean', 'Sum', 'WeightedSum',
        'WeightedMean', 'None'
    ]

    _fp16_compatible_init_op_types = [
        'Float16UniformFill'
    ]

    _fp16_compatible_reducers = [
        'Sum', 'Mean', 'Sqrt', 'PositionWeighted', 'RecencyWeighted',
    ]

    def __init__(self, model, input_record, inner_shape, reducer,
                 weight_init=None, weight_optim=None,
                 name='sparse_lookup', regularizer=None, use_external_weights=False,
                 uniform_weight_init_scale_numerator=1.0, **kwargs):

        super(SparseLookup, self).__init__(model, name, input_record, **kwargs)

        self.sparse_key = get_key(self.input_record)()
        logger.info("Setup the sparse lookup layer for " + self.sparse_key)

        # TODO Add some asserts about input type
        if isinstance(inner_shape, int):
            inner_shape = [inner_shape]
        assert isinstance(inner_shape, list) or isinstance(inner_shape, tuple),\
            "Unexpected type for inner_shape, expected list or tuple, got {0} for {1}".\
            format(type(inner_shape), self.sparse_key)

        if reducer == "PositionWeighted":
            assert _is_id_score_list(self.input_record), (
                "PositionWeighted only support IdScoreList, but got {} for {}"
                + "please use PositionWeighted layer to convert IdList "
                + "to IdScoreList"
            ).format(repr(self.input_record), self.sparse_key)
            self.external_weights = self.input_record.values()

        elif reducer == "RecencyWeighted":
            assert _is_id_score_list(self.input_record), (
                "RecencyWeighted only supports IdScoreList, "
                "while the sparse feature {} is not.".format(self.sparse_key)
            )
            self.external_weights = self.input_record.values()
        # TODO: create a new type of reducer with external weights to wrap
        # this and the above two cases since essentially their input formats
        # are the same.
        elif use_external_weights:
            assert _is_id_score_list(self.input_record), (
                "Use_external_weights only supports IdScoreList, "
                "while the sparse feature {} is not.".format(self.sparse_key)
            )
            assert reducer in ["Sum", "WeightedSum"], (
                "Use_external_weights only supports Sum reducer, "
                "while the reducer is {}.".format(reducer)
            )
            self.external_weights = self.input_record.values()
        self.reducer = reducer
        self.use_external_weights = use_external_weights

        input_dim = get_categorical_limit(self.input_record)
        assert input_dim > 0, "{} should have categorical limit > 0, but got {}".format(
            self.sparse_key, input_dim
        )

        self.input_dim = input_dim
        self.shape = [input_dim] + inner_shape

        self.trainer_version = get_trainer_version_based_on_optim(
            weight_optim
        )

        self.uniform_weight_init_scale_numerator = uniform_weight_init_scale_numerator
        default_init_op = self._get_default_init_op()

        self.weight_init = weight_init or default_init_op

        self.evicted_values = None
        if schema.equal_schemas(
            self.input_record, IdListWithEvicted
        ) or schema.equal_schemas(
            self.input_record, IdScoreListWithEvicted, check_field_types=False
        ):
            self.evicted_values = self.input_record._evicted_values

        # If fp16 is used, make sure fp16 init op is used
        if self.trainer_version == "fp16":
            assert self.reducer in self._fp16_compatible_reducers or use_external_weights, (
                "Fp16 training is enabled. The reducer specified is not supported. "
                "Got {}. Supported reducers: {}. Right now, in general, sum, mean, "
                "positional pooling are supported. Attention is not. Please check "
                "if there is fp16 trained sparse features using advanced pooling.".format(
                    self.reducer, self._fp16_compatible_reducers)
            )

            # if init op is UniformFill, we replace it directly
            if self.weight_init[0] == "UniformFill":
                self.weight_init = ("Float16UniformFill", self.weight_init[1])
            assert self.weight_init[0] in self._fp16_compatible_init_op_types, (
                "Fp16 training is enabled. Init op for weight parameter must be fp16 "
                "compatibale. Got {}. Supported ops: {}".format(
                    self.weight_init[0],
                    self._fp16_compatible_init_op_types)
            )

            assert regularizer is None, "Regularizer is not compatible with fp16"

        if self.input_record.lengths.metadata:
            avg_length = self.input_record.lengths.metadata.expected_value
        else:
            avg_length = None

        self.w = self.create_param(
            param_name='w',
            shape=self.shape,
            initializer=self.weight_init,
            optimizer=weight_optim,
            ps_param=LayerPsParam(
                sparse_key=self.sparse_key,
                average_length=avg_length),
            regularizer=regularizer
        )
        if self.evicted_values:
            self.reinit_vec = self.create_param(
                param_name="reinit_vec",
                shape=inner_shape,
                initializer=self.weight_init,
                optimizer=model.NoOptim,
                regularizer=None,
            )

        self.scale_bias_init = ('ConstantFill', {'value': 0.0})

        self.scale_bias = self.create_param(
            param_name='scale_bias',
            shape=[],
            initializer=self.scale_bias_init,
            optimizer=model.NoOptim,
        )

        self.output_schema = schema.Scalar(
            (np.float32, inner_shape),
            self.get_next_blob_reference('output'),
        )

    def get_memory_usage(self):
        return functools.reduce(operator.mul, self.shape) * 4

    def get_fp16_compatible_parameters(self):
        return [self.w]

    def support_8bit(self):
        # Rowwise quantization makes sense only if shape it's 2D matrix with
        # second dimension >= 8
        if len(self.shape) != 2 or self.shape[1] < 8:
            return False
        return True

    def get_8bits_compatible_parameters(self, fused=True):
        if not self.support_8bit():
            return []
        if fused:
            RowwiseQuantized8BitsWeight = collections.namedtuple(
                'RowwiseQuantized8BitsWeight', 'w'
            )
            return [RowwiseQuantized8BitsWeight(self.w)]
        else:
            RowwiseQuantized8BitsWeight = collections.namedtuple(
                'RowwiseQuantized8BitsWeight', 'w, scale_bias'
            )
            return [RowwiseQuantized8BitsWeight(self.w, self.scale_bias)]

    def _get_default_init_op(self):
        scale = math.sqrt(self.uniform_weight_init_scale_numerator / self.input_dim)

        if self.trainer_version == 'fp32':
            default_weight_init = ('UniformFill', {'min': -scale, 'max': scale})
        elif self.trainer_version == 'fp16':
            default_weight_init = ("Float16UniformFill", {'min': -scale, 'max': scale})
        else:
            raise NotImplementedError(
                "Train version {} is not currently supported for sparse feature {}".format(
                    trainer_version, self.sparse_key
                )
            )

        return default_weight_init

    def _gather_wrapper(self, net, version, in_indices, out):
        # Gather can work on all kinds of input data types, and output
        # data with the same type. Convert the output of Gather to float,
        # because the follow-up Ops expect fp32.
        if version == 'fp32':
            return net.Gather([self.w, in_indices], out)
        elif version == 'fp16':
            gathered_w = net.Gather([self.w, in_indices], 'gathered_w')
            return net.HalfToFloat(gathered_w, out)
        elif version == 'uint8rowwise':
            gathered_w = net.Gather([self.w, in_indices], 'gathered_w')
            gathered_scale_bias = net.Gather(
                [self.scale_bias, in_indices],
                'gathered_scale_bias'
            )

            return net.Rowwise8BitQuantizedToFloat(
                [gathered_w, gathered_scale_bias], out)
        elif version == 'fused_uint8rowwise':
            gathered_w = net.Gather([self.w, in_indices], 'gathered_w')
            return net.Fused8BitRowwiseQuantizedToFloat(gathered_w, out)
        elif version == 'fused_uint4rowwise':
            gathered_w = net.Gather([self.w, in_indices], 'gathered_w')
            return net.Fused4BitRowwiseQuantizedToFloat(gathered_w, out)

        else:
            raise "Unsupported version of operators in SparseLookup " +\
                "layer: {0} for sparse feature {1}".format(
                    version, self.sparse_key
                )

    def _sparse_lengths_weighted_reducer(
        self,
        in_indices,
        weights,
        reducer,
        net,
        version,
        grad_on_weights=0,
    ):
        op_input = [
            self.w,
            weights,
            in_indices,
            self.input_record.lengths(),
        ]
        layer_name = 'SparseLengths' + reducer

        if version in ['fp32', 'fp16']:
            # SparseLengths* Ops will accept either fp16 or fp32 embedding
            # matrix and output fp32 pooled embedding
            # A special case here is that we need FP16 engine for
            # SparseLengthsWeightedSum when FP16 embeedings are used for
            # correct backward updates
            if reducer == "WeightedSum" and version == "fp16":
                net.SparseLengthsWeightedSum(
                    op_input,
                    self.output_schema.field_blobs(),
                    grad_on_weights=grad_on_weights,
                    engine='FP16',
                )
            else:
                net.__getattr__(layer_name)(
                    op_input,
                    self.output_schema.field_blobs(),
                    grad_on_weights=grad_on_weights,
                )
        elif version == 'uint8rowwise':
            op_input.insert(len(op_input), self.scale_bias)
            net.__getattr__(layer_name + '8BitsRowwise')(
                op_input, self.output_schema.field_blobs())
        elif version == 'fused_uint8rowwise':
            net.__getattr__(layer_name + 'Fused8BitRowwise')(
                op_input, self.output_schema.field_blobs())
        elif version == 'fused_uint4rowwise':
            net.__getattr__(layer_name + 'Fused4BitRowwise')(
                op_input, self.output_schema.field_blobs())
        else:
            raise "Unsupported version of operator in SparseLookUp " +\
                "layer: {0} for sparse feature {1}".format(
                    version, self.sparse_key
                )

    # deal with sparse features of id_list type
    def _add_ops_id_list(self, net, version):
        assert self.reducer in self._id_list_supported_reducers, (
            "Unsupported reducer: {} for ID_LIST {}".format(
                self.reducer, self.sparse_key
            )
        )
        if self.reducer in ['Sum', 'Mean', 'WeightedSum', 'WeightedMean']:
            op_input = [self.w,
                        self.input_record.items(),
                        self.input_record.lengths()]

            # For id list features, the behaviors of 'Sum' and
            # 'WeightedSum' are identical, since we can regard the weight on each
            # id as 1. Similarly, for 'Mean' and 'WeightedMean'.
            if self.reducer == 'WeightedSum':
                self.reducer = 'Sum'
            elif self.reducer == 'WeightedMean':
                self.reducer = 'Mean'

            layer_name = 'SparseLengths' + self.reducer
            if version in ['fp32', 'fp16']:
                # SparseLengths* Ops will accept either fp16 or fp32 embedding
                # matrix and output fp32 pooled embedding
                net.__getattr__(layer_name)(
                    op_input,
                    self.output_schema.field_blobs(),
                )
            elif version == 'uint8rowwise':
                op_input.insert(len(op_input), self.scale_bias)
                net.__getattr__(layer_name + '8BitsRowwise')(
                    op_input, self.output_schema.field_blobs())
            elif version == 'fused_uint8rowwise':
                net.__getattr__(layer_name + 'Fused8BitRowwise')(
                    op_input, self.output_schema.field_blobs())
            elif version == 'fused_uint4rowwise':
                net.__getattr__(layer_name + 'Fused4BitRowwise')(
                    op_input, self.output_schema.field_blobs())
            else:
                raise "Unsupported version of operator in SparseLookUp " +\
                    "layer: {0} for sparse feature {1}".format(
                        version, self.sparse_key
                    )

        elif self.reducer == 'Sqrt':
            sqrt_weight = net.LengthsToWeights(
                [self.input_record.lengths()],
                [net.NextScopedBlob('lengths_sqrt')],
                power=0.5,
            )
            self._sparse_lengths_weighted_reducer(
                self.input_record.items(),
                sqrt_weight,
                'WeightedSum', net, version)

        elif self.reducer == 'None':
            # Gather operator will gather the embedding for each id of
            # each IdList.
            self._gather_wrapper(net, version, self.input_record.items(),
                                 self.output_schema.field_blobs())

        else:
            table_rows = self._gather_wrapper(
                net, version, self.input_record.items(), 'table_rows')

            segment_ids = net.LengthsToSegmentIds(
                self.input_record.lengths(),
                net.NextScopedBlob(self.input_record.lengths() + '_sid'))
            net.__getattr__('SortedSegmentRange' + self.reducer)(
                [table_rows, segment_ids],
                self.output_schema.field_blobs(),
            )

    # deal with sparse features of id_score_list type
    def _add_ops_id_score_list(self, net, version):
        assert self.reducer in self._id_score_list_supported_reducers, (
            "Unsupported reducer: {} for ID_SCORE_LIST {}".format(
                self.reducer, self.sparse_key
            )
        )
        if self.reducer in ['WeightedSum', 'WeightedMean']:
            self._sparse_lengths_weighted_reducer(
                self.input_record.keys(),
                self.input_record.values(),
                self.reducer, net, version)

        elif self.reducer in ['PositionWeighted', 'RecencyWeighted'] or self.use_external_weights:
            self._sparse_lengths_weighted_reducer(
                self.input_record.keys(),
                self.external_weights,
                'WeightedSum', net, version, grad_on_weights=1)

        elif self.reducer in ['Sum', 'Mean']:
            op_input = [self.w,
                        self.input_record.keys(),
                        self.input_record.lengths()]

            layer_name = 'SparseLengths' + self.reducer

            if version in ['fp32', 'fp16']:
                net.__getattr__(layer_name)(
                    op_input,
                    self.output_schema.field_blobs(),
                )
            elif version == 'uint8rowwise':
                net.__getattr__(layer_name + '8BitsRowwise')(
                    op_input, self.output_schema.field_blobs())
            elif version == 'fused_uint8rowwise':
                net.__getattr__(layer_name + 'Fused8BitRowwise')(
                    op_input, self.output_schema.field_blobs())
            elif version == 'fused_uint4rowwise':
                net.__getattr__(layer_name + 'Fused4BitRowwise')(
                    op_input, self.output_schema.field_blobs())
            else:
                raise "Unsupported version of operator in SparseLookUp " +\
                    "layer: {0} for sparse feature {1}".format(
                        version, self.sparse_key
                    )

        elif self.reducer == 'None':
            # Gather operator will gather the embedding for each id of
            # each IdList.
            self._gather_wrapper(net, version, self.input_record.keys(),
                                 self.output_schema.field_blobs())
        else:
            raise "Only Sum, Mean, None are supported for IdScoreList input." +\
                "Trying to create with {} for sparse feature {}".format(
                    self.reducer, self.sparse_key
                )

    def _add_ops(self, net, version='fp32', is_train=True):
        if self.evicted_values and is_train:
            net.CopyRowsToTensor(
                [self.w, self.evicted_values.get(), self.reinit_vec], [self.w])
        if _is_id_list(self.input_record):
            self._add_ops_id_list(net, version=version)
        elif _is_id_score_list(self.input_record):
            self._add_ops_id_score_list(net, version=version)
        else:
            raise "Unsupported input type {0}".format(self.input_record)

    def add_train_ops(self, net):
        self._add_ops(net, self.trainer_version, is_train=True)

    def add_ops(self, net):
        version_info = get_current_scope().get(
            get_sparse_lookup_predictor_version.__name__, {'version': 'fp32'}
        )
        lookup_table_blob_size = self.shape[0] * self.shape[1]
        version = get_sparse_lookup_predictor_version(
            version_info['version'],
            blob_size=lookup_table_blob_size,
            min_blob_size_4bits=(
                version_info['min_blob_size_4bits']
                if 'min_blob_size_4bits' in version_info
                else None
            ),
            embedding_dim=self.shape[1],
            sparse_feature_name=self.sparse_key,
        )

        # TODO(amalevich): Layer should not be responsible for decision about
        # quantization.
        if not self.support_8bit() and version in {'uint8rowwise',
                                                   'fused_uint8rowwise',
                                                   'fused_uint4rowwise'}:
            version = 'fp16'

        self._add_ops(net, version, is_train=False)