1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core, workspace
from hypothesis import given
def compare_rowwise(emb_orig, emb_reconstructed, fp16):
# there is an absolute error introduced per row through int8 quantization
# and a relative error introduced when quantizing back from fp32 to fp16
assert emb_orig.shape == emb_reconstructed.shape
rtol = 1e-8
if fp16:
rtol = 1e-3
erange = np.amax(emb_orig, axis=1) - np.amin(emb_orig, axis=1)
threshold = erange / 255.0 / 1.9
for i in range(emb_orig.shape[0]):
r_orig = emb_orig[i, :]
r_reconstructed = emb_reconstructed[i, :]
isclose = np.isclose(r_orig, r_reconstructed, atol=threshold[i], rtol=rtol)
n_violated = isclose.size - isclose.sum()
if n_violated > 0:
print(isclose, threshold[i])
print(i, r_orig, r_reconstructed, threshold[i], r_orig - r_reconstructed)
assert n_violated == 0
class TestLengthsReducerOpsFused8BitRowwise(hu.HypothesisTestCase):
@given(
num_rows=st.integers(1, 20),
blocksize=st.sampled_from([8, 16, 32, 64, 85, 96, 128, 163]),
weighted=st.booleans(),
seed=st.integers(0, 2 ** 32 - 1),
empty_indices=st.booleans(),
fp16=st.booleans(),
)
def test_sparse_lengths_sum(
self, num_rows, blocksize, weighted, seed, empty_indices, fp16
):
net = core.Net("bench")
np.random.seed(seed)
if fp16:
input_data = np.random.rand(num_rows, blocksize).astype(np.float16)
else:
input_data = np.random.rand(num_rows, blocksize).astype(np.float32)
if empty_indices:
lengths = np.zeros(num_rows, dtype=np.int32)
num_indices = 0
else:
num_indices = np.random.randint(len(input_data))
# the number of indices per sample
lengths_split = np.clip(num_indices // 2, 1, 10)
lengths = (
np.ones([num_indices // lengths_split], dtype=np.int32) * lengths_split
)
# readjust num_indices when lengths_split doesn't divide num_indices
num_indices = num_indices // lengths_split * lengths_split
indices = np.random.randint(
low=0, high=len(input_data), size=[num_indices], dtype=np.int32
)
weights = np.random.uniform(size=[len(indices)]).astype(np.float32)
if fp16:
quantized_data = net.HalfFloatToFused8BitRowwiseQuantized(
"input_data", "quantized_data"
)
dequantized_data = net.Fused8BitRowwiseQuantizedToHalfFloat(
quantized_data, "dequantized_data"
)
else:
quantized_data = net.FloatToFused8BitRowwiseQuantized(
"input_data", "quantized_data"
)
dequantized_data = net.Fused8BitRowwiseQuantizedToFloat(
quantized_data, "dequantized_data"
)
if weighted:
net.SparseLengthsWeightedSum(
[dequantized_data, "weights", "indices", "lengths"], "sum_reference"
)
net.SparseLengthsWeightedSumFused8BitRowwise(
[quantized_data, "weights", "indices", "lengths"], "sum_quantized"
)
else:
net.SparseLengthsSum(
[dequantized_data, "indices", "lengths"], "sum_reference"
)
net.SparseLengthsSumFused8BitRowwise(
[quantized_data, "indices", "lengths"], "sum_quantized"
)
workspace.FeedBlob("input_data", input_data)
workspace.FeedBlob("weights", weights)
workspace.FeedBlob("indices", indices)
workspace.FeedBlob("lengths", lengths)
workspace.GlobalInit(["caffe2", "--caffe2_log_level=0"])
workspace.CreateNet(net)
workspace.RunNetOnce(net)
dequantized_data = workspace.FetchBlob("dequantized_data")
np.testing.assert_array_almost_equal(
input_data, workspace.FetchBlob("input_data")
)
compare_rowwise(input_data, dequantized_data, fp16)
sum_reference = workspace.FetchBlob("sum_reference")
sum_quantized = workspace.FetchBlob("sum_quantized")
if fp16:
np.testing.assert_array_almost_equal(
sum_reference, sum_quantized, decimal=3
)
else:
np.testing.assert_array_almost_equal(sum_reference, sum_quantized)
@given(
num_rows=st.integers(1, 20),
blocksize=st.sampled_from([8, 16, 32, 64, 85, 96, 128, 163]),
seed=st.integers(0, 2 ** 32 - 1),
empty_indices=st.booleans(),
fp16=st.booleans(),
)
def test_sparse_lengths_mean(self, num_rows, blocksize, seed, empty_indices, fp16):
net = core.Net("bench")
np.random.seed(seed)
if fp16:
input_data = np.random.rand(num_rows, blocksize).astype(np.float16)
else:
input_data = np.random.rand(num_rows, blocksize).astype(np.float32)
if empty_indices:
lengths = np.zeros(num_rows, dtype=np.int32)
num_indices = 0
else:
num_indices = np.random.randint(len(input_data))
# the number of indices per sample
lengths_split = np.clip(num_indices // 2, 1, 10)
lengths = (
np.ones([num_indices // lengths_split], dtype=np.int32) * lengths_split
)
# readjust num_indices when lengths_split doesn't divide num_indices
num_indices = num_indices // lengths_split * lengths_split
indices = np.random.randint(
low=0, high=len(input_data), size=[num_indices], dtype=np.int32
)
print(indices, lengths)
if fp16:
quantized_data = net.HalfFloatToFused8BitRowwiseQuantized(
"input_data", "quantized_data"
)
dequantized_data = net.Fused8BitRowwiseQuantizedToHalfFloat(
quantized_data, "dequantized_data"
)
else:
quantized_data = net.FloatToFused8BitRowwiseQuantized(
"input_data", "quantized_data"
)
dequantized_data = net.Fused8BitRowwiseQuantizedToFloat(
quantized_data, "dequantized_data"
)
net.SparseLengthsMean(
[dequantized_data, "indices", "lengths"], "mean_reference"
)
net.SparseLengthsMeanFused8BitRowwise(
[quantized_data, "indices", "lengths"], "mean_quantized"
)
workspace.FeedBlob("input_data", input_data)
workspace.FeedBlob("indices", indices)
workspace.FeedBlob("lengths", lengths)
workspace.GlobalInit(["caffe2", "--caffe2_log_level=0"])
workspace.CreateNet(net)
workspace.RunNetOnce(net)
dequantized_data = workspace.FetchBlob("dequantized_data")
np.testing.assert_array_almost_equal(
input_data, workspace.FetchBlob("input_data")
)
compare_rowwise(input_data, dequantized_data, fp16)
mean_reference = workspace.FetchBlob("mean_reference")
mean_quantized = workspace.FetchBlob("mean_quantized")
if fp16:
np.testing.assert_array_almost_equal(
mean_reference, mean_quantized, decimal=3
)
else:
np.testing.assert_array_almost_equal(mean_reference, mean_quantized)
|