File: mkl_concat_op_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (45 lines) | stat: -rw-r--r-- 1,173 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45





import unittest
import hypothesis.strategies as st
from hypothesis import given
import numpy as np
from caffe2.python import core, workspace
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.mkl_test_util as mu


@unittest.skipIf(
    not workspace.C.has_mkldnn, "Skipping as we do not have mkldnn."
)
class MKLConcatTest(hu.HypothesisTestCase):
    @given(
        batch_size=st.integers(1, 10),
        channel_splits=st.lists(st.integers(1, 10), min_size=1, max_size=3),
        height=st.integers(1, 10),
        width=st.integers(1, 10),
        **mu.gcs
    )
    def test_mkl_concat(
        self, batch_size, channel_splits, height, width, gc, dc
    ):
        Xs = [
            np.random.rand(batch_size, channel,
                           height, width).astype(np.float32)
            for channel in channel_splits
        ]
        op = core.CreateOperator(
            "Concat",
            ["X_{}".format(i) for i in range(len(Xs))],
            ["concat_result", "split_info"],
            order="NCHW",
        )
        self.assertDeviceChecks(dc, op, Xs, [0])


if __name__ == "__main__":
    import unittest
    unittest.main()