File: mkl_pool_speed_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (106 lines) | stat: -rw-r--r-- 4,210 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106




import unittest

import numpy as np
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace, test_util


@unittest.skipIf(not workspace.C.has_mkldnn, "Skipping as we do not have mkldnn.")
class TestMKLBasic(test_util.TestCase):
    def testMaxPoolingSpeed(self):
        # We randomly select a shape to test the speed. Intentionally we
        # test a batch size of 1 since this may be the most frequent use
        # case for MKL during deployment time.
        X = np.random.rand(1, 64, 224, 224).astype(np.float32)
        mkl_do = core.DeviceOption(caffe2_pb2.MKLDNN)
        # Makes sure that feed works.
        workspace.FeedBlob("X", X)
        workspace.FeedBlob("X_mkl", X, device_option=mkl_do)
        net = core.Net("test")
        # Makes sure that we can run relu.
        net.MaxPool("X", "Y", stride=2, kernel=3)
        net.MaxPool("X_mkl", "Y_mkl",
                 stride=2, kernel=3, device_option=mkl_do)
        workspace.CreateNet(net)
        workspace.RunNet(net)
        # makes sure that the results are good.
        np.testing.assert_allclose(
            workspace.FetchBlob("Y"),
            workspace.FetchBlob("Y_mkl"),
            atol=1e-2,
            rtol=1e-2)
        runtime = workspace.BenchmarkNet(net.Proto().name, 1, 100, True)

        print("Maxpooling CPU runtime {}, MKL runtime {}.".format(runtime[1], runtime[2]))

    def testAveragePoolingSpeed(self):
        # We randomly select a shape to test the speed. Intentionally we
        # test a batch size of 1 since this may be the most frequent use
        # case for MKL during deployment time.
        X = np.random.rand(1, 64, 224, 224).astype(np.float32)
        mkl_do = core.DeviceOption(caffe2_pb2.MKLDNN)
        # Makes sure that feed works.
        workspace.FeedBlob("X", X)
        workspace.FeedBlob("X_mkl", X, device_option=mkl_do)
        net = core.Net("test")
        # Makes sure that we can run relu.
        net.AveragePool("X", "Y", stride=2, kernel=3)
        net.AveragePool("X_mkl", "Y_mkl",
                 stride=2, kernel=3, device_option=mkl_do)
        workspace.CreateNet(net)
        workspace.RunNet(net)
        # makes sure that the results are good.
        np.testing.assert_allclose(
            workspace.FetchBlob("Y"),
            workspace.FetchBlob("Y_mkl"),
            atol=1e-2,
            rtol=1e-2)
        runtime = workspace.BenchmarkNet(net.Proto().name, 1, 100, True)

        print("Averagepooling CPU runtime {}, MKL runtime {}.".format(runtime[1], runtime[2]))

    def testConvReluMaxPoolSpeed(self):
        # We randomly select a shape to test the speed. Intentionally we
        # test a batch size of 1 since this may be the most frequent use
        # case for MKL during deployment time.
        X = np.random.rand(1, 3, 224, 224).astype(np.float32) - 0.5
        W = np.random.rand(64, 3, 11, 11).astype(np.float32) - 0.5
        b = np.random.rand(64).astype(np.float32) - 0.5

        mkl_do = core.DeviceOption(caffe2_pb2.MKLDNN)
        # Makes sure that feed works.
        workspace.FeedBlob("X", X)
        workspace.FeedBlob("W", W)
        workspace.FeedBlob("b", b)
        workspace.FeedBlob("X_mkl", X, device_option=mkl_do)
        workspace.FeedBlob("W_mkl", W, device_option=mkl_do)
        workspace.FeedBlob("b_mkl", b, device_option=mkl_do)

        net = core.Net("test")

        net.Conv(["X", "W", "b"], "C", pad=1, stride=1, kernel=11)
        net.Conv(["X_mkl", "W_mkl", "b_mkl"], "C_mkl",
                 pad=1, stride=1, kernel=11, device_option=mkl_do)
        net.Relu("C", "R")
        net.Relu("C_mkl", "R_mkl", device_option=mkl_do)
        net.AveragePool("R", "Y", stride=2, kernel=3)
        net.AveragePool("R_mkl", "Y_mkl",
                 stride=2, kernel=3, device_option=mkl_do)

        workspace.CreateNet(net)
        workspace.RunNet(net)
        # makes sure that the results are good.
        np.testing.assert_allclose(
            workspace.FetchBlob("Y"),
            workspace.FetchBlob("Y_mkl"),
            atol=1e-2,
            rtol=1e-2)
        runtime = workspace.BenchmarkNet(net.Proto().name, 1, 100, True)


if __name__ == '__main__':
    unittest.main()