1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
import numpy as np
import unittest
from caffe2.proto import caffe2_pb2
from caffe2.python import (
workspace,
device_checker,
test_util,
model_helper,
brew,
)
class TestMiniAlexNet(test_util.TestCase):
def _MiniAlexNetNoDropout(self, order):
# First, AlexNet using the cnn wrapper.
model = model_helper.ModelHelper(name="alexnet")
conv1 = brew.conv(
model,
"data",
"conv1",
3,
16,
11,
("XavierFill", {}),
("ConstantFill", {}),
stride=4,
pad=0
)
relu1 = brew.relu(model, conv1, "relu1")
norm1 = brew.lrn(model, relu1, "norm1", size=5, alpha=0.0001, beta=0.75)
pool1 = brew.max_pool(model, norm1, "pool1", kernel=3, stride=2)
conv2 = brew.group_conv(
model,
pool1,
"conv2",
16,
32,
5,
("XavierFill", {}),
("ConstantFill", {"value": 0.1}),
group=2,
stride=1,
pad=2
)
relu2 = brew.relu(model, conv2, "relu2")
norm2 = brew.lrn(model, relu2, "norm2", size=5, alpha=0.0001, beta=0.75)
pool2 = brew.max_pool(model, norm2, "pool2", kernel=3, stride=2)
conv3 = brew.conv(
model,
pool2,
"conv3",
32,
64,
3,
("XavierFill", {'std': 0.01}),
("ConstantFill", {}),
pad=1
)
relu3 = brew.relu(model, conv3, "relu3")
conv4 = brew.group_conv(
model,
relu3,
"conv4",
64,
64,
3,
("XavierFill", {}),
("ConstantFill", {"value": 0.1}),
group=2,
pad=1
)
relu4 = brew.relu(model, conv4, "relu4")
conv5 = brew.group_conv(
model,
relu4,
"conv5",
64,
32,
3,
("XavierFill", {}),
("ConstantFill", {"value": 0.1}),
group=2,
pad=1
)
relu5 = brew.relu(model, conv5, "relu5")
pool5 = brew.max_pool(model, relu5, "pool5", kernel=3, stride=2)
fc6 = brew.fc(
model, pool5, "fc6", 1152, 1024, ("XavierFill", {}),
("ConstantFill", {"value": 0.1})
)
relu6 = brew.relu(model, fc6, "relu6")
fc7 = brew.fc(
model, relu6, "fc7", 1024, 1024, ("XavierFill", {}),
("ConstantFill", {"value": 0.1})
)
relu7 = brew.relu(model, fc7, "relu7")
fc8 = brew.fc(
model, relu7, "fc8", 1024, 5, ("XavierFill", {}),
("ConstantFill", {"value": 0.0})
)
pred = brew.softmax(model, fc8, "pred")
xent = model.LabelCrossEntropy([pred, "label"], "xent")
loss = model.AveragedLoss([xent], ["loss"])
model.AddGradientOperators([loss])
return model
def _testMiniAlexNet(self, order):
# First, we get all the random initialization of parameters.
model = self._MiniAlexNetNoDropout(order)
workspace.ResetWorkspace()
workspace.RunNetOnce(model.param_init_net)
inputs = dict(
[(str(name), workspace.FetchBlob(str(name))) for name in
model.params]
)
if order == "NCHW":
inputs["data"] = np.random.rand(4, 3, 227, 227).astype(np.float32)
else:
inputs["data"] = np.random.rand(4, 227, 227, 3).astype(np.float32)
inputs["label"] = np.array([1, 2, 3, 4]).astype(np.int32)
cpu_device = caffe2_pb2.DeviceOption()
cpu_device.device_type = caffe2_pb2.CPU
gpu_device = caffe2_pb2.DeviceOption()
gpu_device.device_type = workspace.GpuDeviceType
checker = device_checker.DeviceChecker(0.05, [cpu_device, gpu_device])
ret = checker.CheckNet(
model.net.Proto(),
inputs,
# The indices sometimes may be sensitive to small numerical
# differences in the input, so we ignore checking them.
ignore=['_pool1_idx', '_pool2_idx', '_pool5_idx']
)
self.assertEqual(ret, True)
@unittest.skipIf(not workspace.has_gpu_support,
"No GPU support. Skipping test.")
def testMiniAlexNetNCHW(self):
self._testMiniAlexNet("NCHW")
# No Group convolution support for NHWC right now
#@unittest.skipIf(not workspace.has_gpu_support,
# "No GPU support. Skipping test.")
#def testMiniAlexNetNHWC(self):
# self._testMiniAlexNet("NHWC")
if __name__ == '__main__':
unittest.main()
|