1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
|
## @package model_helper
# Module caffe2.python.model_helper
from caffe2.python import core, scope, workspace
from caffe2.python.helpers.db_input import db_input
from caffe2.python.modeling import parameter_info
from caffe2.python.modeling.parameter_sharing import (
parameter_sharing_context,
)
from caffe2.python.optimizer_context import (
OptimizerContext,
DEFAULT_OPTIM,
)
from caffe2.python.regularizer_context import RegularizerContext
from future.utils import viewitems, viewkeys
from itertools import chain
import logging
# _known_working_ops are operators that do not need special care.
_known_working_ops = [
"Accuracy",
"Adam",
"Add",
"Adagrad",
"SparseAdagrad",
"Adadelta",
"SparseAdadelta",
"AveragedLoss",
"Cast",
"Checkpoint",
"ConstantFill",
"Copy",
"CopyGPUToCPU",
"CopyCPUToGPU",
"DequeueBlobs",
"EnsureCPUOutput",
"ExpandDims",
"Flatten",
"FlattenToVec",
"LabelCrossEntropy",
"LearningRate",
"MakeTwoClass",
"MatMul",
"NCCLAllreduce",
"NHWC2NCHW",
"PackSegments",
"Print",
"PRelu",
"ReduceFrontSum",
"Scale",
"ScatterWeightedSum",
"Sigmoid",
"SortedSegmentSum",
"Snapshot", # Note: snapshot is deprecated, use Checkpoint
"Softmax",
"SoftmaxWithLoss",
"SquaredL2Distance",
"Squeeze",
"StopGradient",
"Summarize",
"Tanh",
"Transpose",
"UnpackSegments",
"WeightedSum",
"YellowFin"
]
class ModelHelper(object):
"""A helper model so we can manange models more easily. It contains net def
and parameter storages. You can add an Operator yourself, e.g.
model = model_helper.ModelHelper(name="train_net")
# init your weight and bias as w and b
w = model.param_init_net.XavierFill(...)
b = model.param_init_net.ConstantFill(...)
fc1 = model.FC([input, w, b], output, **kwargs)
or you can use helper functions in brew module without manually
defining parameter initializations and operators.
model = model_helper.ModelHelper(name="train_net")
fc1 = brew.fc(model, input, output, dim_in, dim_out, **kwargs)
"""
def __init__(self, name=None, init_params=True, allow_not_known_ops=True,
skip_sparse_optim=False, param_model=None, arg_scope=None):
self.name = name or "model"
self.net = core.Net(self.name)
if param_model is not None:
self.param_init_net = param_model.param_init_net
self.param_to_grad = param_model.param_to_grad
self.params = param_model.params
self._parameters_info = param_model._parameters_info
self._computed_params = param_model._computed_params
else:
self.param_init_net = core.Net(self.name + '_init')
self.param_to_grad = {}
self.params = []
self._parameters_info = {}
self._computed_params = []
self._param_info_deprecated = []
self._devices = []
self.gradient_ops_added = False
self.init_params = init_params
self.allow_not_known_ops = allow_not_known_ops
self.skip_sparse_optim = skip_sparse_optim
self.weights = []
self.biases = []
self._arg_scope = {
'order': "NCHW",
'use_cudnn': True,
'cudnn_exhaustive_search': False,
}
if arg_scope is not None:
# Please notice value as None is not acceptable. We are not checking it
# here because we already have check in MakeArgument.
self._arg_scope.update(arg_scope)
@property
def arg_scope(self):
return self._arg_scope
def get_name(self):
return self.name
def _infer_param_shape(self, param):
for op in self.param_init_net.Proto().op:
if str(param) in op.output:
for arg in op.arg:
if arg.name == "shape":
return list(arg.ints)
return None
def _update_param_info_deprecated(self):
assert len(self._param_info_deprecated) <= len(self.params)
for param in self.params[len(self._param_info_deprecated):]:
if not isinstance(param, core.BlobReference):
raise ValueError(
"Param %s must be a BlobReference!" % str(param))
self._param_info_deprecated.append(parameter_info.ParameterInfo(
param_id=len(self._param_info_deprecated),
param=param,
shape=self._infer_param_shape(param)))
for info in self._param_info_deprecated:
info.grad = self.param_to_grad.get(info.name)
def _normalize_tags(self, tags):
tags = tags or []
return set(tags) if isinstance(tags, list) else set([tags])
def create_param(self, param_name, shape, initializer, tags=None):
"""
Creates parameter with a given name and initializer.
If param_name is instance of BlobRefernce - then this blob will be used
to store parameter (no any logic will affect it's location).
If param_name is instance of a string type, then the final blob will
be created in the CurrentNameScope with the respect of all parameter
sharing logic, i.e. 'resolved_name_scope/param_name'.
Parameter sharing logic is going to override CurrentNameScope according
to the rules that are specified through ParameterSharing contexts,
all ParameterSharing contexts are applied recursively until there are no
extra overrides present, where on each step the best match will be
applied first.
The following examples should clarify the way ParameterSharing logic
works:
As an example if this function is called with parameter 'w':
a. Call from some scope 'global_scope' with no Parameter sharing:
'global_scope/w'
b. Call from scope 'scope_b', with override {'scope_b': 'scope_a'}:
'scope_a/w'
c. Call from scope 'scope_a', with override {'scope_a': ''}:
'scope_a/w'
d. Call from scope 'scope_b/shared', with overrides
{'scope_b/shared': 'scope_b', 'scope_b': 'scope_a'}:
'scope_a/w'
d. Call from scope 'scope_b/unshared', with overrides
{'scope_b/shared': 'scope_b', 'scope_b': 'scope_a'}:
'scope_a/unshared/w'
"""
# ParameterSharing works only for case when param_name is instance of
# a string type. If param_name is a BlobReference - no attempt for
# ParameterSharing will be applied.
if isinstance(param_name, core.BlobReference):
param_name = str(param_name)
elif isinstance(param_name, str):
# Parameter name will be equal to current Namescope that got
# resolved with the respect of parameter sharing of the scopes.
param_name = parameter_sharing_context.get_parameter_name(
param_name)
else:
raise TypeError("Unsupported type for param_name")
if param_name in self._parameters_info:
assert self._parameters_info[param_name].shape == shape
return self._parameters_info[param_name].blob
param_info = initializer.create_param(
param_name=core.BlobReference(param_name),
init_net=self.param_init_net,
shape=shape,
)
optim_context = OptimizerContext.current()
for tag in self._normalize_tags(tags):
if optim_context.has_optimizer(tag):
# param_info will check optimizer has not been set
param_info.optimizer = optim_context.get_optimizer(tag)
if not param_info.optimizer and optim_context.has_optimizer(DEFAULT_OPTIM):
param_info.optimizer = optim_context.get_optimizer(DEFAULT_OPTIM)
reg_context = RegularizerContext.current()
param_info.regularizer = reg_context
self._parameters_info[param_name] = param_info
# Add param to legacy structs as well, so all other functions for
# parameters are still working.
self.AddParameter(param_info.blob, tags)
return param_info.blob
def get_param_info(self, param):
assert isinstance(param, core.BlobReference), \
"Param {} is not a BlobReference".format(param)
return self._parameters_info.get(param, None)
# This method is deprecated, use create_param method which
# also does parameter initialization when needed
def add_param_DEPRECATED(self, param, key=None, shape=None, length=None):
logging.warning("add_param method is DEPRECATED")
self._update_param_info_deprecated()
self.AddParameter(param)
if key is not None and self.net.input_record() is not None:
idx = self.net.input_record().field_blobs().index(key)
key = self.net.input_record().field_names()[idx]
shape = shape if shape is not None else self._infer_param_shape(param)
if not isinstance(param, core.BlobReference):
raise ValueError("Param %s must be a BlobReference!" % str(param))
self._param_info_deprecated.append(parameter_info.ParameterInfo(
param_id=len(self._param_info_deprecated),
param=param,
shape=shape,
key=key,
length=length,
))
return self._param_info_deprecated[-1]
def AddParameter(self, param, tags=None):
assert isinstance(param, core.BlobReference)
tags = self._normalize_tags(tags)
if parameter_info.ParameterTags.COMPUTED_PARAM in tags:
self._computed_params.append(param)
else:
self.params.append(param)
if parameter_info.ParameterTags.WEIGHT in tags:
self.weights.append(param)
if parameter_info.ParameterTags.BIAS in tags:
self.biases.append(param)
@staticmethod
def _NormalizeNamescope(namescope):
if namescope is None:
return scope.CurrentNameScope()
elif namescope == '' or namescope.endswith(scope._NAMESCOPE_SEPARATOR):
return namescope
else:
return namescope + scope._NAMESCOPE_SEPARATOR
def GetParams(self, namescope=None, top_scope=False):
'''
Returns the params in current namescope
'''
namescope = ModelHelper._NormalizeNamescope(namescope)
if namescope == '':
return self.params[:]
else:
return [p for p in self.params if
p.GetNameScope().startswith(namescope)]
def Proto(self):
return self.net.Proto()
def InitProto(self):
return self.param_init_net.Proto()
def RunAllOnGPU(self, *args, **kwargs):
self.param_init_net.RunAllOnGPU(*args, **kwargs)
self.net.RunAllOnGPU(*args, **kwargs)
def CreateDB(self, blob_out, db, db_type, **kwargs):
dbreader = self.param_init_net.CreateDB(
[], blob_out, db=db, db_type=db_type, **kwargs)
return dbreader
def AddGradientOperators(self, *args, **kwargs):
if self.gradient_ops_added:
raise RuntimeError("You cannot run AddGradientOperators twice.")
self.Validate()
self.gradient_ops_added = True
self.grad_map = self.net.AddGradientOperators(*args, **kwargs)
self.param_to_grad = self.get_param_to_grad(self.params)
# Populate ParameterInfo for all parameters if missing
# and add gradient blob information. So optimizers can use it
for param, grad in self.param_to_grad.items():
param_info = self.get_param_info(param)
if param_info:
param_info.grad = grad
else:
self._parameters_info[param] = parameter_info.ParameterInfo(
param_id=None,
param=param,
grad=grad,
)
return self.grad_map
def get_param_to_grad(self, params):
'''
Given a list of parameters returns a dict from a parameter
to a corresponding gradient
'''
param_to_grad = {}
if not self.gradient_ops_added:
raise RuntimeError("You need to run AddGradientOperators first.")
# We need to use empty namescope when creating the gradients
# to prevent duplicating the namescope prefix for gradient blobs.
for p in params:
if str(p) in self.grad_map:
param_to_grad[p] = self.grad_map[str(p)]
return param_to_grad
def GetOptimizationParamInfo(self, params=None):
'''
Returns a map for param => grad.
If params is not specified, all parameters will be considered.
'''
if not self.gradient_ops_added:
raise RuntimeError("Need to call AddGradientOperators first")
param_to_grad = self.param_to_grad
if params:
param_to_grad = self.get_param_to_grad(params)
return [
self.get_param_info(param) for param, grad in viewitems(param_to_grad)
if (
not self.skip_sparse_optim or
not isinstance(grad, core.GradientSlice)
)
]
def _Validate(self):
'''
Check for duplicate params
'''
params_list = [str(p) for p in self.params]
params_set = set(params_list)
dupes = []
if len(params_set) != len(params_list):
params_list = sorted(params_list)
for j, p in enumerate(params_list):
if j > 0 and params_list[j - 1] == p:
if p not in dupes:
dupes.append(p)
return dupes
def Validate(self):
dupes = self._Validate()
assert dupes == [], "Duplicate params: {}".format(dupes)
def GetComputedParams(self, namescope=None):
'''
Returns the computed params in current namescope. 'Computed params'
are such parameters that are not optimized via gradient descent but are
directly computed from data, such as the running mean and variance
of Spatial Batch Normalization.
'''
namescope = ModelHelper._NormalizeNamescope(namescope)
if namescope == '':
return self._computed_params[:]
else:
return [p for p in self._computed_params
if p.GetNameScope().startswith(namescope)]
def GetAllParams(self, namescope=None):
return self.GetParams(namescope) + self.GetComputedParams(namescope)
def TensorProtosDBInput(
self, unused_blob_in, blob_out, batch_size, db, db_type, **kwargs
):
"""TensorProtosDBInput."""
assert len(unused_blob_in) == 0, \
"""You cannot pass reader to model_helper.TensorProtosDBInput.
Use model.net.TensorProtosDBInput instead to create the op."""
return db_input(
self, blob_out, batch_size, db, db_type, **kwargs)
def GetDevices(self):
assert len(self._devices) > 0, \
"Use data_parallel_model to run model on multiple GPUs."
return self._devices
def __getattr__(self, op_type):
"""Catch-all for all other operators, mostly those without params."""
if op_type.startswith('__'):
raise AttributeError(op_type)
if not core.IsOperator(op_type):
raise AttributeError(
'Method ' + op_type + ' is not a registered operator.' +
' Did you mean: [' +
','.join(workspace.C.nearby_opnames(op_type)) + ']'
)
if op_type not in _known_working_ops:
if not self.allow_not_known_ops:
raise AttributeError(
"Operator {} is not known to be safe".format(op_type))
logging.warning("You are creating an op that the ModelHelper "
"does not recognize: {}.".format(op_type))
return self.net.__getattr__(op_type)
def __dir__(self):
return sorted(set(chain(
dir(type(self)),
viewkeys(self.__dict__),
_known_working_ops
)))
def GetCompleteNet(self):
r""" Return param_init_net + net Net.
Returns:
'core.Net' containing param_init_net and net
"""
new_net = self.param_init_net.Clone(
self.name + "_complete_net", keep_schema=True)
# add init net info to debug info
for op in new_net.Proto().op:
op.debug_info = op.debug_info + "/param_init_net"
new_net.AppendNet(self.net)
# keep the execution optimization
if self.net.Proto().HasField("type"):
new_net.Proto().type = self.net.Proto().type
return new_net
def ConstructInitTrainNetfromNet(self, net):
r""" construct init net and train net from complete_net
Inputs:
net: 'core.Net' containing param_init_net and train net
"""
param_op_mask = []
train_op_mask = []
for idx, op in enumerate(net.Proto().op):
if op.debug_info.endswith("/param_init_net"):
param_op_mask.append(idx)
else:
train_op_mask.append(idx)
self.param_init_net = net.Clone(
net.Name() + "/generated_param_init_net",
keep_schema=True,
op_id_mask=param_op_mask,
update_external_list=True,
)
self.net = net.Clone(
net.Name() + "/generated_net",
keep_schema=True,
op_id_mask=train_op_mask,
update_external_list=True,
)
def ExtractPredictorNet(
net_proto,
input_blobs,
output_blobs,
device=None,
renames=None,
disabled_inputs=None,
):
'''
Takes a model net for training and returns a net which can be
used for prediction. For example, all gradient operators and
input operators are removed.
@param net_proto protobuf of the net you want to process (net.Proto())
@param input_blobs list/set of blob names that are the inputs of predictor
@param output_blobs list/set of blob names that are outputs of predictor
@param device optional device option that is assigned
@param renames dictionary of blob name to a new name (optional)
@param disabled_inputs optional set of blobs that are 'switched off'. This
will cause branches with those blobs as inputs to be removed
'''
predict_net = core.Net(net_proto.name + "_predict")
predict_proto = predict_net.Proto()
orig_external_inputs = set(net_proto.external_input)
orig_external_outputs = set(net_proto.external_output)
input_blobs = {str(b) for b in input_blobs}
known_blobs = set(orig_external_inputs).union(input_blobs)
output_blobs = {str(b) for b in output_blobs}
external_inputs = set(input_blobs)
external_outputs = set(output_blobs)
if renames is None:
renames = {}
if disabled_inputs is not None:
known_blobs = known_blobs - set(disabled_inputs)
ops = list(net_proto.op)
# Find the range of ops that we should include
try:
first_op_with_input = min(
[
j for j in range(len(ops))
if input_blobs.intersection(ops[j].input) and ops[j].type !=
'StopGradient'
]
)
except ValueError:
raise Exception("No ops with input={}".format(input_blobs))
try:
last_op_with_output = max(
[
j for j in range(len(ops))
if output_blobs.intersection(ops[j].output)
]
)
except ValueError:
raise Exception("No ops with output={}".format(output_blobs))
def validate_op(op):
# Check that the op does not have is_test = 0 set. This is a common
# pitfall with SpatialBN op, at lest.
for arg in op.arg:
if arg.name == "is_test" and arg.i == 0:
raise Exception(
"An operator had is_test=0, did you try to extract a " +
"predictor from a train model (instead of test model)?" +
" Op was: {}".format(str(op))
)
def rename_list(proto_list):
# proto lists don't support assignments
new_list = proto_list[:]
for j, b in enumerate(new_list):
if b in renames:
new_list[j] = renames[b]
del proto_list[:]
proto_list.extend(new_list)
# Iterate through the ops and only include those whose inputs
# we can satisfy.
for op in ops[first_op_with_input:(last_op_with_output + 1)]:
if known_blobs.issuperset(op.input):
# Special handling for recurrent nets
# TODO: when standard argument type for "nets" is introduced,
# this can be more general
if op.type == 'RecurrentNetwork':
for arg in op.arg:
if arg.name == 'backward_step_net':
arg.ClearField(str('n'))
elif arg.name == 'step_net':
for step_op in arg.n.op:
rename_list(step_op.input)
rename_list(step_op.output)
if device is not None:
step_op.device_option.device_type = device.device_type
step_op.device_option.device_id = device.device_id
rename_list(arg.n.external_input)
rename_list(arg.n.external_output)
# Add additional external inputs
external_inputs.update(
set(arg.n.external_input).intersection(
orig_external_inputs
)
)
if device is not None:
op.device_option.device_type = device.device_type
op.device_option.device_id = device.device_id
validate_op(op)
predict_proto.op.extend([op])
known_blobs.update(op.output)
external_inputs.update(
set(op.input).intersection(orig_external_inputs)
)
external_outputs.update(
set(op.output).intersection(orig_external_outputs)
)
else:
logging.debug(
"Op {} had unknown inputs: {}".format(
op.type, set(op.input).difference(known_blobs)
)
)
# Predictor net's external inputs and outputs include only those
# that are part of this net.
predict_proto.external_input.extend(external_inputs)
predict_proto.external_output.extend(external_outputs)
rename_list(predict_proto.external_input)
rename_list(predict_proto.external_output)
renamed_input_blobs = []
for b in input_blobs:
if b in renames:
renamed_input_blobs.append(renames[b])
else:
renamed_input_blobs.append(b)
for op in predict_proto.op:
rename_list(op.input)
rename_list(op.output)
return predict_net, list(
set(predict_proto.external_input) - set(renamed_input_blobs)
)
|