File: model_helper_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (69 lines) | stat: -rw-r--r-- 2,336 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
"""unittest for ModelHelper class"""



import unittest

from caffe2.python import brew, model_helper


class ModelHelperTest(unittest.TestCase):
    def test_get_complete_net_type(self):
        model = model_helper.ModelHelper("test_orig")
        brew.conv(
            model,
            "input",
            "conv",
            dim_in=3,
            dim_out=16,
            weight_init=("MSRAFill", {}),
            kernel=3,
            stride=1,
            pad=0,
        )
        model.net.Proto().type = "async_scheduling"
        net = model.GetCompleteNet()
        model2 = model_helper.ModelHelper("test_new")
        model2.ConstructInitTrainNetfromNet(net)
        self.assertTrue(model2.net.Proto().type, "async_scheduling")
        self.assertTrue(model2.param_init_net.Proto().type, "async_scheduling")

    def test_get_complete_net(self):
        model = model_helper.ModelHelper("test_orig")
        conv = brew.conv(
            model,
            "input",
            "conv",
            dim_in=3,
            dim_out=16,
            weight_init=("MSRAFill", {}),
            kernel=3,
            stride=1,
            pad=0,
        )
        conv = brew.spatial_bn(model, conv, "conv_bn", 16, epsilon=1e-3, is_test=False)
        conv = brew.relu(model, conv, "conv_relu")
        pred = brew.fc(model, conv, "pred", dim_in=16 * 3 * 3, dim_out=10)
        brew.softmax(model, pred, "softmax")
        net = model.GetCompleteNet()
        model2 = model_helper.ModelHelper("test_new")
        model2.ConstructInitTrainNetfromNet(net)

        net = model.param_init_net
        net2 = model2.param_init_net
        for op1, op2 in zip(net.Proto().op, net2.Proto().op):
            op1.debug_info = op1.debug_info + "/param_init_net"
            self.assertEqual(
                op1, op2, "op mismatch between {}\n and {}\n".format(op1, op2)
            )
        net = model.net
        net2 = model2.net
        for op1, op2 in zip(net.Proto().op, net2.Proto().op):
            self.assertEqual(
                op1, op2, "op mismatch between {}\n and {}\n".format(op1, op2)
            )
        # this is not guaranteed in other situations where user define own net
        self.assertEqual(
            sorted(map(str, net.external_inputs)),
            sorted(map(str, net2.external_inputs)),
        )