File: compute_statistics_for_blobs_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (84 lines) | stat: -rw-r--r-- 2,870 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84





import unittest
from caffe2.python import workspace, brew, model_helper
from caffe2.python.modeling.compute_statistics_for_blobs import (
    ComputeStatisticsForBlobs
)

import numpy as np


class ComputeStatisticsForBlobsTest(unittest.TestCase):
    def test_compute_statistics_for_blobs(self):
        model = model_helper.ModelHelper(name="test")
        data = model.net.AddExternalInput("data")
        fc1 = brew.fc(model, data, "fc1", dim_in=4, dim_out=2)

        # no operator name set, will use default
        brew.fc(model, fc1, "fc2", dim_in=2, dim_out=1)

        net_modifier = ComputeStatisticsForBlobs(
            blobs=['fc1_w', 'fc2_w'],
            logging_frequency=10,
        )

        net_modifier(model.net)

        workspace.FeedBlob('data', np.random.rand(10, 4).astype(np.float32))

        workspace.RunNetOnce(model.param_init_net)
        workspace.RunNetOnce(model.net)

        fc1_w = workspace.FetchBlob('fc1_w')
        fc1_w_summary = workspace.FetchBlob('fc1_w_summary')

        # std is unbiased here
        stats_ref = np.array([fc1_w.flatten().min(), fc1_w.flatten().max(),
                     fc1_w.flatten().mean(), fc1_w.flatten().std(ddof=1)])

        self.assertAlmostEqual(np.linalg.norm(stats_ref - fc1_w_summary), 0,
                               delta=1e-5)
        self.assertEqual(fc1_w_summary.size, 4)

        assert model.net.output_record() is None

    def test_compute_statistics_for_blobs_modify_output_record(self):
        model = model_helper.ModelHelper(name="test")
        data = model.net.AddExternalInput("data")
        fc1 = brew.fc(model, data, "fc1", dim_in=4, dim_out=2)

        # no operator name set, will use default
        brew.fc(model, fc1, "fc2", dim_in=2, dim_out=1)

        net_modifier = ComputeStatisticsForBlobs(
            blobs=['fc1_w', 'fc2_w'],
            logging_frequency=10,
        )

        net_modifier(model.net, modify_output_record=True)

        workspace.FeedBlob('data', np.random.rand(10, 4).astype(np.float32))

        workspace.RunNetOnce(model.param_init_net)
        workspace.RunNetOnce(model.net)

        fc1_w = workspace.FetchBlob('fc1_w')
        fc1_w_summary = workspace.FetchBlob('fc1_w_summary')

        # std is unbiased here
        stats_ref = np.array([fc1_w.flatten().min(), fc1_w.flatten().max(),
                     fc1_w.flatten().mean(), fc1_w.flatten().std(ddof=1)])

        self.assertAlmostEqual(np.linalg.norm(stats_ref - fc1_w_summary), 0,
                               delta=1e-5)
        self.assertEqual(fc1_w_summary.size, 4)

        self.assertEqual(len(model.net.Proto().op), 8)
        assert 'fc1_w' + net_modifier.field_name_suffix() in\
            model.net.output_record().field_blobs()
        assert 'fc2_w' + net_modifier.field_name_suffix() in\
            model.net.output_record().field_blobs()