1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
## @package download
# Module caffe2.python.models.download
import argparse
import os
import sys
import signal
import re
import json
from caffe2.proto import caffe2_pb2
# Import urllib
from urllib.error import HTTPError, URLError
import urllib.request as urllib
# urllib requires more work to deal with a redirect, so not using vanity url
DOWNLOAD_BASE_URL = "https://s3.amazonaws.com/download.caffe2.ai/models/"
DOWNLOAD_COLUMNS = 70
# Don't let urllib hang up on big downloads
def signalHandler(signal, frame):
print("Killing download...")
exit(0)
signal.signal(signal.SIGINT, signalHandler)
def deleteDirectory(top_dir):
for root, dirs, files in os.walk(top_dir, topdown=False):
for name in files:
os.remove(os.path.join(root, name))
for name in dirs:
os.rmdir(os.path.join(root, name))
os.rmdir(top_dir)
def progressBar(percentage):
full = int(DOWNLOAD_COLUMNS * percentage / 100)
bar = full * "#" + (DOWNLOAD_COLUMNS - full) * " "
sys.stdout.write(u"\u001b[1000D[" + bar + "] " + str(percentage) + "%")
sys.stdout.flush()
def downloadFromURLToFile(url, filename, show_progress=True):
try:
print("Downloading from {url}".format(url=url))
response = urllib.urlopen(url)
size = int(response.info().get('Content-Length').strip())
chunk = min(size, 8192)
print("Writing to {filename}".format(filename=filename))
if show_progress:
downloaded_size = 0
progressBar(0)
with open(filename, "wb") as local_file:
while True:
data_chunk = response.read(chunk)
if not data_chunk:
break
local_file.write(data_chunk)
if show_progress:
downloaded_size += len(data_chunk)
progressBar(int(100 * downloaded_size / size))
print("") # New line to fix for progress bar
except HTTPError as e:
raise Exception("Could not download model. [HTTP Error] {code}: {reason}."
.format(code=e.code, reason=e.reason))
except URLError as e:
raise Exception("Could not download model. [URL Error] {reason}."
.format(reason=e.reason))
def getURLFromName(name, filename):
return "{base_url}{name}/{filename}".format(base_url=DOWNLOAD_BASE_URL,
name=name, filename=filename)
def downloadModel(model, args):
# Figure out where to store the model
model_folder = '{folder}'.format(folder=model)
dir_path = os.path.dirname(os.path.realpath(__file__))
if args.install:
model_folder = '{dir_path}/{folder}'.format(dir_path=dir_path,
folder=model)
# Check if that folder is already there
if os.path.exists(model_folder) and not os.path.isdir(model_folder):
if not args.force:
raise Exception("Cannot create folder for storing the model,\
there exists a file of the same name.")
else:
print("Overwriting existing file! ({filename})"
.format(filename=model_folder))
os.remove(model_folder)
if os.path.isdir(model_folder):
if not args.force:
response = ""
query = "Model already exists, continue? [y/N] "
try:
response = raw_input(query)
except NameError:
response = input(query)
if response.upper() == 'N' or not response:
print("Cancelling download...")
exit(0)
print("Overwriting existing folder! ({filename})".format(filename=model_folder))
deleteDirectory(model_folder)
# Now we can safely create the folder and download the model
os.makedirs(model_folder)
for f in ['predict_net.pb', 'init_net.pb']:
try:
downloadFromURLToFile(getURLFromName(model, f),
'{folder}/{f}'.format(folder=model_folder,
f=f))
except Exception as e:
print("Abort: {reason}".format(reason=str(e)))
print("Cleaning up...")
deleteDirectory(model_folder)
exit(0)
if args.install:
os.symlink("{folder}/__sym_init__.py".format(folder=dir_path),
"{folder}/__init__.py".format(folder=model_folder))
def validModelName(name):
invalid_names = ['__init__']
if name in invalid_names:
return False
if not re.match("^[/0-9a-zA-Z_-]+$", name):
return False
return True
class ModelDownloader:
def __init__(self, model_env_name='CAFFE2_MODELS'):
self.model_env_name = model_env_name
def _model_dir(self, model):
caffe2_home = os.path.expanduser(os.getenv('CAFFE2_HOME', '~/.caffe2'))
models_dir = os.getenv(self.model_env_name, os.path.join(caffe2_home, 'models'))
return os.path.join(models_dir, model)
def _download(self, model):
model_dir = self._model_dir(model)
assert not os.path.exists(model_dir)
os.makedirs(model_dir)
for f in ['predict_net.pb', 'init_net.pb', 'value_info.json']:
url = getURLFromName(model, f)
dest = os.path.join(model_dir, f)
try:
downloadFromURLToFile(url, dest, show_progress=False)
except TypeError:
# show_progress not supported prior to
# Caffe2 78c014e752a374d905ecfb465d44fa16e02a28f1
# (Sep 17, 2017)
downloadFromURLToFile(url, dest)
except Exception:
deleteDirectory(model_dir)
raise
# This version returns an extra debug_str argument that helps to understand
# why our work sometimes fails in sandcastle
def get_c2_model_dbg(self, model_name):
debug_str = "get_c2_model debug:\n"
model_dir = self._model_dir(model_name)
if not os.path.exists(model_dir):
self._download(model_name)
c2_predict_pb = os.path.join(model_dir, 'predict_net.pb')
debug_str += "c2_predict_pb path: " + c2_predict_pb + "\n"
c2_predict_net = caffe2_pb2.NetDef()
with open(c2_predict_pb, 'rb') as f:
len_read = c2_predict_net.ParseFromString(f.read())
debug_str += "c2_predict_pb ParseFromString = " + str(len_read) + "\n"
c2_predict_net.name = model_name
c2_init_pb = os.path.join(model_dir, 'init_net.pb')
debug_str += "c2_init_pb path: " + c2_init_pb + "\n"
c2_init_net = caffe2_pb2.NetDef()
with open(c2_init_pb, 'rb') as f:
len_read = c2_init_net.ParseFromString(f.read())
debug_str += "c2_init_pb ParseFromString = " + str(len_read) + "\n"
c2_init_net.name = model_name + '_init'
with open(os.path.join(model_dir, 'value_info.json')) as f:
value_info = json.load(f)
return c2_init_net, c2_predict_net, value_info, debug_str
def get_c2_model(self, model_name):
init_net, predict_net, value_info, _ = self.get_c2_model_dbg(model_name)
return init_net, predict_net, value_info
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='Download or install pretrained models.')
parser.add_argument('model', nargs='+',
help='Model to download/install.')
parser.add_argument('-i', '--install', action='store_true',
help='Install the model.')
parser.add_argument('-f', '--force', action='store_true',
help='Force a download/installation.')
args = parser.parse_args()
for model in args.model:
if validModelName(model):
downloadModel(model, args)
else:
print("'{}' is not a valid model name.".format(model))
|