File: download.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (215 lines) | stat: -rw-r--r-- 8,003 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
## @package download
# Module caffe2.python.models.download




import argparse
import os
import sys
import signal
import re
import json

from caffe2.proto import caffe2_pb2

# Import urllib
from urllib.error import HTTPError, URLError
import urllib.request as urllib

# urllib requires more work to deal with a redirect, so not using vanity url
DOWNLOAD_BASE_URL = "https://s3.amazonaws.com/download.caffe2.ai/models/"
DOWNLOAD_COLUMNS = 70


# Don't let urllib hang up on big downloads
def signalHandler(signal, frame):
    print("Killing download...")
    exit(0)


signal.signal(signal.SIGINT, signalHandler)


def deleteDirectory(top_dir):
    for root, dirs, files in os.walk(top_dir, topdown=False):
        for name in files:
            os.remove(os.path.join(root, name))
        for name in dirs:
            os.rmdir(os.path.join(root, name))
    os.rmdir(top_dir)


def progressBar(percentage):
    full = int(DOWNLOAD_COLUMNS * percentage / 100)
    bar = full * "#" + (DOWNLOAD_COLUMNS - full) * " "
    sys.stdout.write(u"\u001b[1000D[" + bar + "] " + str(percentage) + "%")
    sys.stdout.flush()


def downloadFromURLToFile(url, filename, show_progress=True):
    try:
        print("Downloading from {url}".format(url=url))
        response = urllib.urlopen(url)
        size = int(response.info().get('Content-Length').strip())
        chunk = min(size, 8192)
        print("Writing to {filename}".format(filename=filename))
        if show_progress:
            downloaded_size = 0
            progressBar(0)
        with open(filename, "wb") as local_file:
            while True:
                data_chunk = response.read(chunk)
                if not data_chunk:
                    break
                local_file.write(data_chunk)
                if show_progress:
                    downloaded_size += len(data_chunk)
                    progressBar(int(100 * downloaded_size / size))
        print("")  # New line to fix for progress bar
    except HTTPError as e:
        raise Exception("Could not download model. [HTTP Error] {code}: {reason}."
                        .format(code=e.code, reason=e.reason))
    except URLError as e:
        raise Exception("Could not download model. [URL Error] {reason}."
                        .format(reason=e.reason))


def getURLFromName(name, filename):
    return "{base_url}{name}/{filename}".format(base_url=DOWNLOAD_BASE_URL,
                                                name=name, filename=filename)


def downloadModel(model, args):
    # Figure out where to store the model
    model_folder = '{folder}'.format(folder=model)
    dir_path = os.path.dirname(os.path.realpath(__file__))
    if args.install:
        model_folder = '{dir_path}/{folder}'.format(dir_path=dir_path,
                                                    folder=model)

    # Check if that folder is already there
    if os.path.exists(model_folder) and not os.path.isdir(model_folder):
        if not args.force:
            raise Exception("Cannot create folder for storing the model,\
                            there exists a file of the same name.")
        else:
            print("Overwriting existing file! ({filename})"
                  .format(filename=model_folder))
            os.remove(model_folder)
    if os.path.isdir(model_folder):
        if not args.force:
            response = ""
            query = "Model already exists, continue? [y/N] "
            try:
                response = raw_input(query)
            except NameError:
                response = input(query)
            if response.upper() == 'N' or not response:
                print("Cancelling download...")
                exit(0)
        print("Overwriting existing folder! ({filename})".format(filename=model_folder))
        deleteDirectory(model_folder)

    # Now we can safely create the folder and download the model
    os.makedirs(model_folder)
    for f in ['predict_net.pb', 'init_net.pb']:
        try:
            downloadFromURLToFile(getURLFromName(model, f),
                                  '{folder}/{f}'.format(folder=model_folder,
                                                        f=f))
        except Exception as e:
            print("Abort: {reason}".format(reason=str(e)))
            print("Cleaning up...")
            deleteDirectory(model_folder)
            exit(0)

    if args.install:
        os.symlink("{folder}/__sym_init__.py".format(folder=dir_path),
                   "{folder}/__init__.py".format(folder=model_folder))


def validModelName(name):
    invalid_names = ['__init__']
    if name in invalid_names:
        return False
    if not re.match("^[/0-9a-zA-Z_-]+$", name):
        return False
    return True

class ModelDownloader:

    def __init__(self, model_env_name='CAFFE2_MODELS'):
        self.model_env_name = model_env_name

    def _model_dir(self, model):
        caffe2_home = os.path.expanduser(os.getenv('CAFFE2_HOME', '~/.caffe2'))
        models_dir = os.getenv(self.model_env_name, os.path.join(caffe2_home, 'models'))
        return os.path.join(models_dir, model)

    def _download(self, model):
        model_dir = self._model_dir(model)
        assert not os.path.exists(model_dir)
        os.makedirs(model_dir)

        for f in ['predict_net.pb', 'init_net.pb', 'value_info.json']:
            url = getURLFromName(model, f)
            dest = os.path.join(model_dir, f)
            try:
                downloadFromURLToFile(url, dest, show_progress=False)
            except TypeError:
                # show_progress not supported prior to
                # Caffe2 78c014e752a374d905ecfb465d44fa16e02a28f1
                # (Sep 17, 2017)
                downloadFromURLToFile(url, dest)
            except Exception:
                deleteDirectory(model_dir)
                raise

    # This version returns an extra debug_str argument that helps to understand
    # why our work sometimes fails in sandcastle
    def get_c2_model_dbg(self, model_name):
        debug_str = "get_c2_model debug:\n"
        model_dir = self._model_dir(model_name)
        if not os.path.exists(model_dir):
            self._download(model_name)

        c2_predict_pb = os.path.join(model_dir, 'predict_net.pb')
        debug_str += "c2_predict_pb path: " + c2_predict_pb + "\n"
        c2_predict_net = caffe2_pb2.NetDef()
        with open(c2_predict_pb, 'rb') as f:
            len_read = c2_predict_net.ParseFromString(f.read())
            debug_str += "c2_predict_pb ParseFromString = " + str(len_read) + "\n"
        c2_predict_net.name = model_name

        c2_init_pb = os.path.join(model_dir, 'init_net.pb')
        debug_str += "c2_init_pb path: " + c2_init_pb + "\n"
        c2_init_net = caffe2_pb2.NetDef()
        with open(c2_init_pb, 'rb') as f:
            len_read = c2_init_net.ParseFromString(f.read())
            debug_str += "c2_init_pb ParseFromString = " + str(len_read) + "\n"
        c2_init_net.name = model_name + '_init'

        with open(os.path.join(model_dir, 'value_info.json')) as f:
            value_info = json.load(f)
        return c2_init_net, c2_predict_net, value_info, debug_str

    def get_c2_model(self, model_name):
        init_net, predict_net, value_info, _ = self.get_c2_model_dbg(model_name)
        return init_net, predict_net, value_info

if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description='Download or install pretrained models.')
    parser.add_argument('model', nargs='+',
                        help='Model to download/install.')
    parser.add_argument('-i', '--install', action='store_true',
                        help='Install the model.')
    parser.add_argument('-f', '--force', action='store_true',
                        help='Force a download/installation.')
    args = parser.parse_args()
    for model in args.model:
        if validModelName(model):
            downloadModel(model, args)
        else:
            print("'{}' is not a valid model name.".format(model))