File: imagenet_trainer_test_utils.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (200 lines) | stat: -rw-r--r-- 5,755 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200





import numpy as np
import time

from caffe2.python import workspace, cnn, memonger, core

def has_blob(proto, needle):
    for op in proto.op:
        for inp in op.input:
            if inp == needle:
                return True
        for outp in op.output:
            if outp == needle:
                return True
    return False


def count_blobs(proto):
    blobs = set()
    for op in proto.op:
        blobs = blobs.union(set(op.input)).union(set(op.output))
    return len(blobs)


def count_shared_blobs(proto):
    blobs = set()
    for op in proto.op:
        blobs = blobs.union(set(op.input)).union(set(op.output))
    return len([b for b in blobs if "_shared" in b])


def test_shared_grads(
    with_shapes,
    create_model,
    conv_blob,
    last_out_blob,
    data_blob='gpu_0/data',
    label_blob='gpu_0/label',
    num_labels=1000,
):
    model = cnn.CNNModelHelper(
        order="NCHW",
        name="test",
        cudnn_exhaustive_search=True,
    )
    with core.NameScope("gpu_0"):
        data = model.net.AddExternalInput(data_blob)
        label = model.net.AddExternalInput(label_blob)
        (_softmax, loss) = create_model(
            model,
            data,
            num_input_channels=3,
            num_labels=num_labels,
            label=label,
            is_test=False,
        )

    param_to_grad = model.AddGradientOperators([loss])

    (shapes, types) = workspace.InferShapesAndTypes(
        [model.param_init_net, model.net],
        {data_blob: [4, 3, 227, 227],
         label_blob: [4]},
    )

    count_before = count_blobs(model.net.Proto())
    optim_proto = memonger.share_grad_blobs(
        model.net,
        ["gpu_0/loss"],
        set(model.param_to_grad.values()),
        "gpu_0/",
        share_activations=True,
        dont_share_blobs=set([str(param_to_grad[conv_blob])]),
        blob_shapes=shapes if with_shapes else None,
    )
    count_after = count_blobs(optim_proto)

    # Run model and compare results. We check that the loss is same
    # and also that the final gradient (conv1_w_grad is same)
    workspace.RunNetOnce(model.param_init_net)
    data = np.random.rand(4, 3, 227, 227).astype(np.float32)
    label = (np.random.rand(4) * num_labels).astype(np.int32)

    workspace.FeedBlob(data_blob, data)
    workspace.FeedBlob(label_blob, label)

    workspace.RunNetOnce(model.net)
    model.net.Proto().type = 'dag'
    model.net.Proto().num_workers = 4
    loss1 = workspace.FetchBlob(last_out_blob)
    conv1_w_grad = workspace.FetchBlob(param_to_grad[conv_blob])
    workspace.FeedBlob(param_to_grad[conv_blob], np.array([0.0]))

    workspace.RunNetOnce(optim_proto)
    optimized_loss1 = workspace.FetchBlob(last_out_blob)
    optim_conv1_w_grad = workspace.FetchBlob(param_to_grad[conv_blob])

    return [(count_after, count_before),
            (loss1, optimized_loss1),
            (conv1_w_grad, optim_conv1_w_grad)]


def test_forward_only(
    create_model,
    last_out_blob,
    data_blob='gpu_0/data',
    num_labels=1000,
):
    model = cnn.CNNModelHelper(
        order="NCHW",
        name="test",
        cudnn_exhaustive_search=True,
    )
    with core.NameScope("gpu_0"):
            data = model.net.AddExternalInput(data_blob)
            create_model(
                model,
                data,
                num_input_channels=3,
                num_labels=num_labels,
                is_test=True
            )

    count_before = count_blobs(model.net.Proto())
    optim_proto = memonger.optimize_inference_for_dag(
        model.net, [data_blob], "gpu_0/"
    )
    count_after = count_blobs(optim_proto)
    num_shared_blobs = count_shared_blobs(optim_proto)

    # Run model and compare results
    workspace.RunNetOnce(model.param_init_net)
    data = np.random.rand(4, 3, 227, 227).astype(np.float32)

    workspace.FeedBlob(data_blob, data)
    workspace.RunNetOnce(model.net)
    model.net.Proto().type = 'dag'
    model.net.Proto().num_workers = 4
    loss1 = workspace.FetchBlob(last_out_blob)

    workspace.RunNetOnce(optim_proto)
    optimized_loss1 = workspace.FetchBlob(last_out_blob)
    return [(count_after, count_before),
            (num_shared_blobs),
            (loss1, optimized_loss1)]


def test_forward_only_fast_simplenet(
    create_model,
    last_out_blob,
    data_blob="gpu_0/data",
    num_labels=1000,
):
    model = cnn.CNNModelHelper(
        order="NCHW",
        name="test",
        cudnn_exhaustive_search=True,
    )
    with core.NameScope("gpu_0"):
            data = model.net.AddExternalInput(data_blob)
            create_model(
                model,
                data,
                num_input_channels=3,
                num_labels=num_labels,
                is_test=True
            )

    count_before = count_blobs(model.net.Proto())
    t = time.time()
    optim_proto = memonger.optimize_inference_fast(
        model.net.Proto(),
        set([data_blob, last_out_blob]).union(
            set(model.net.Proto().external_input))
    )
    print("Optimization took {} secs".format(time.time() - t))
    count_after = count_blobs(optim_proto)
    num_shared_blobs = count_shared_blobs(optim_proto)

    print(count_after, count_before, num_shared_blobs)

    # Run model and compare results
    workspace.RunNetOnce(model.param_init_net)
    data = np.random.rand(4, 3, 227, 227).astype(np.float32)

    workspace.FeedBlob(data_blob, data)
    model.net.Proto().type = 'simple'

    workspace.RunNetOnce(model.net)
    loss1 = workspace.FetchBlob(last_out_blob)

    workspace.RunNetOnce(optim_proto)
    optimized_loss1 = workspace.FetchBlob(last_out_blob)
    return [(count_after, count_before),
            (num_shared_blobs),
            (loss1, optimized_loss1)]