1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
import numpy as np
import time
from caffe2.python import workspace, cnn, memonger, core
def has_blob(proto, needle):
for op in proto.op:
for inp in op.input:
if inp == needle:
return True
for outp in op.output:
if outp == needle:
return True
return False
def count_blobs(proto):
blobs = set()
for op in proto.op:
blobs = blobs.union(set(op.input)).union(set(op.output))
return len(blobs)
def count_shared_blobs(proto):
blobs = set()
for op in proto.op:
blobs = blobs.union(set(op.input)).union(set(op.output))
return len([b for b in blobs if "_shared" in b])
def test_shared_grads(
with_shapes,
create_model,
conv_blob,
last_out_blob,
data_blob='gpu_0/data',
label_blob='gpu_0/label',
num_labels=1000,
):
model = cnn.CNNModelHelper(
order="NCHW",
name="test",
cudnn_exhaustive_search=True,
)
with core.NameScope("gpu_0"):
data = model.net.AddExternalInput(data_blob)
label = model.net.AddExternalInput(label_blob)
(_softmax, loss) = create_model(
model,
data,
num_input_channels=3,
num_labels=num_labels,
label=label,
is_test=False,
)
param_to_grad = model.AddGradientOperators([loss])
(shapes, types) = workspace.InferShapesAndTypes(
[model.param_init_net, model.net],
{data_blob: [4, 3, 227, 227],
label_blob: [4]},
)
count_before = count_blobs(model.net.Proto())
optim_proto = memonger.share_grad_blobs(
model.net,
["gpu_0/loss"],
set(model.param_to_grad.values()),
"gpu_0/",
share_activations=True,
dont_share_blobs=set([str(param_to_grad[conv_blob])]),
blob_shapes=shapes if with_shapes else None,
)
count_after = count_blobs(optim_proto)
# Run model and compare results. We check that the loss is same
# and also that the final gradient (conv1_w_grad is same)
workspace.RunNetOnce(model.param_init_net)
data = np.random.rand(4, 3, 227, 227).astype(np.float32)
label = (np.random.rand(4) * num_labels).astype(np.int32)
workspace.FeedBlob(data_blob, data)
workspace.FeedBlob(label_blob, label)
workspace.RunNetOnce(model.net)
model.net.Proto().type = 'dag'
model.net.Proto().num_workers = 4
loss1 = workspace.FetchBlob(last_out_blob)
conv1_w_grad = workspace.FetchBlob(param_to_grad[conv_blob])
workspace.FeedBlob(param_to_grad[conv_blob], np.array([0.0]))
workspace.RunNetOnce(optim_proto)
optimized_loss1 = workspace.FetchBlob(last_out_blob)
optim_conv1_w_grad = workspace.FetchBlob(param_to_grad[conv_blob])
return [(count_after, count_before),
(loss1, optimized_loss1),
(conv1_w_grad, optim_conv1_w_grad)]
def test_forward_only(
create_model,
last_out_blob,
data_blob='gpu_0/data',
num_labels=1000,
):
model = cnn.CNNModelHelper(
order="NCHW",
name="test",
cudnn_exhaustive_search=True,
)
with core.NameScope("gpu_0"):
data = model.net.AddExternalInput(data_blob)
create_model(
model,
data,
num_input_channels=3,
num_labels=num_labels,
is_test=True
)
count_before = count_blobs(model.net.Proto())
optim_proto = memonger.optimize_inference_for_dag(
model.net, [data_blob], "gpu_0/"
)
count_after = count_blobs(optim_proto)
num_shared_blobs = count_shared_blobs(optim_proto)
# Run model and compare results
workspace.RunNetOnce(model.param_init_net)
data = np.random.rand(4, 3, 227, 227).astype(np.float32)
workspace.FeedBlob(data_blob, data)
workspace.RunNetOnce(model.net)
model.net.Proto().type = 'dag'
model.net.Proto().num_workers = 4
loss1 = workspace.FetchBlob(last_out_blob)
workspace.RunNetOnce(optim_proto)
optimized_loss1 = workspace.FetchBlob(last_out_blob)
return [(count_after, count_before),
(num_shared_blobs),
(loss1, optimized_loss1)]
def test_forward_only_fast_simplenet(
create_model,
last_out_blob,
data_blob="gpu_0/data",
num_labels=1000,
):
model = cnn.CNNModelHelper(
order="NCHW",
name="test",
cudnn_exhaustive_search=True,
)
with core.NameScope("gpu_0"):
data = model.net.AddExternalInput(data_blob)
create_model(
model,
data,
num_input_channels=3,
num_labels=num_labels,
is_test=True
)
count_before = count_blobs(model.net.Proto())
t = time.time()
optim_proto = memonger.optimize_inference_fast(
model.net.Proto(),
set([data_blob, last_out_blob]).union(
set(model.net.Proto().external_input))
)
print("Optimization took {} secs".format(time.time() - t))
count_after = count_blobs(optim_proto)
num_shared_blobs = count_shared_blobs(optim_proto)
print(count_after, count_before, num_shared_blobs)
# Run model and compare results
workspace.RunNetOnce(model.param_init_net)
data = np.random.rand(4, 3, 227, 227).astype(np.float32)
workspace.FeedBlob(data_blob, data)
model.net.Proto().type = 'simple'
workspace.RunNetOnce(model.net)
loss1 = workspace.FetchBlob(last_out_blob)
workspace.RunNetOnce(optim_proto)
optimized_loss1 = workspace.FetchBlob(last_out_blob)
return [(count_after, count_before),
(num_shared_blobs),
(loss1, optimized_loss1)]
|