File: resnet.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (434 lines) | stat: -rw-r--r-- 11,972 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
## @package resnet
# Module caffe2.python.models.resnet





from caffe2.python import brew
import logging

'''
Utility for creating ResNe(X)t
"Deep Residual Learning for Image Recognition" by He, Zhang et. al. 2015
"Aggregated Residual Transformations for Deep Neural Networks" by Xie et. al. 2016
'''


class ResNetBuilder():
    '''
    Helper class for constructing residual blocks.
    '''

    def __init__(
        self,
        model,
        prev_blob,
        no_bias,
        is_test,
        bn_epsilon=1e-5,
        bn_momentum=0.9,
    ):
        self.model = model
        self.comp_count = 0
        self.comp_idx = 0
        self.prev_blob = prev_blob
        self.is_test = is_test
        self.bn_epsilon = bn_epsilon
        self.bn_momentum = bn_momentum
        self.no_bias = 1 if no_bias else 0

    def add_conv(
        self,
        in_filters,
        out_filters,
        kernel,
        stride=1,
        group=1,
        pad=0,
    ):
        self.comp_idx += 1
        self.prev_blob = brew.conv(
            self.model,
            self.prev_blob,
            'comp_%d_conv_%d' % (self.comp_count, self.comp_idx),
            in_filters,
            out_filters,
            weight_init=("MSRAFill", {}),
            kernel=kernel,
            stride=stride,
            group=group,
            pad=pad,
            no_bias=self.no_bias,
        )
        return self.prev_blob

    def add_relu(self):
        self.prev_blob = brew.relu(
            self.model,
            self.prev_blob,
            self.prev_blob,  # in-place
        )
        return self.prev_blob

    def add_spatial_bn(self, num_filters):
        self.prev_blob = brew.spatial_bn(
            self.model,
            self.prev_blob,
            'comp_%d_spatbn_%d' % (self.comp_count, self.comp_idx),
            num_filters,
            epsilon=self.bn_epsilon,
            momentum=self.bn_momentum,
            is_test=self.is_test,
        )
        return self.prev_blob

    '''
    Add a "bottleneck" component as described in He et. al. Figure 3 (right)
    '''

    def add_bottleneck(
        self,
        input_filters,   # num of feature maps from preceding layer
        base_filters,    # num of filters internally in the component
        output_filters,  # num of feature maps to output
        stride=1,
        group=1,
        spatial_batch_norm=True,
    ):
        self.comp_idx = 0
        shortcut_blob = self.prev_blob

        # 1x1
        self.add_conv(
            input_filters,
            base_filters,
            kernel=1,
            stride=1,
        )

        if spatial_batch_norm:
            self.add_spatial_bn(base_filters)

        self.add_relu()

        # 3x3 (note the pad, required for keeping dimensions)
        self.add_conv(
            base_filters,
            base_filters,
            kernel=3,
            stride=stride,
            group=group,
            pad=1,
        )

        if spatial_batch_norm:
            self.add_spatial_bn(base_filters)
        self.add_relu()

        # 1x1
        last_conv = self.add_conv(base_filters, output_filters, kernel=1)
        if spatial_batch_norm:
            last_conv = self.add_spatial_bn(output_filters)

        # Summation with input signal (shortcut)
        # When the number of feature maps mismatch between the input
        # and output (this usually happens when the residual stage
        # changes), we need to do a projection for the short cut
        if output_filters != input_filters:
            shortcut_blob = brew.conv(
                self.model,
                shortcut_blob,
                'shortcut_projection_%d' % self.comp_count,
                input_filters,
                output_filters,
                weight_init=("MSRAFill", {}),
                kernel=1,
                stride=stride,
                no_bias=self.no_bias,
            )
            if spatial_batch_norm:
                shortcut_blob = brew.spatial_bn(
                    self.model,
                    shortcut_blob,
                    'shortcut_projection_%d_spatbn' % self.comp_count,
                    output_filters,
                    epsilon=self.bn_epsilon,
                    momentum=self.bn_momentum,
                    is_test=self.is_test,
                )

        self.prev_blob = brew.sum(
            self.model, [shortcut_blob, last_conv],
            'comp_%d_sum_%d' % (self.comp_count, self.comp_idx)
        )
        self.comp_idx += 1
        self.add_relu()

        # Keep track of number of high level components if this ResNetBuilder
        self.comp_count += 1

        return output_filters

    def add_simple_block(
        self,
        input_filters,
        num_filters,
        down_sampling=False,
        spatial_batch_norm=True
    ):
        self.comp_idx = 0
        shortcut_blob = self.prev_blob

        # 3x3
        self.add_conv(
            input_filters,
            num_filters,
            kernel=3,
            stride=(1 if down_sampling is False else 2),
            pad=1
        )

        if spatial_batch_norm:
            self.add_spatial_bn(num_filters)
        self.add_relu()

        last_conv = self.add_conv(num_filters, num_filters, kernel=3, pad=1)
        if spatial_batch_norm:
            last_conv = self.add_spatial_bn(num_filters)

        # Increase of dimensions, need a projection for the shortcut
        if (num_filters != input_filters):
            shortcut_blob = brew.conv(
                self.model,
                shortcut_blob,
                'shortcut_projection_%d' % self.comp_count,
                input_filters,
                num_filters,
                weight_init=("MSRAFill", {}),
                kernel=1,
                stride=(1 if down_sampling is False else 2),
                no_bias=self.no_bias,
            )
            if spatial_batch_norm:
                shortcut_blob = brew.spatial_bn(
                    self.model,
                    shortcut_blob,
                    'shortcut_projection_%d_spatbn' % self.comp_count,
                    num_filters,
                    epsilon=1e-3,
                    is_test=self.is_test,
                )

        self.prev_blob = brew.sum(
            self.model, [shortcut_blob, last_conv],
            'comp_%d_sum_%d' % (self.comp_count, self.comp_idx)
        )
        self.comp_idx += 1
        self.add_relu()

        # Keep track of number of high level components if this ResNetBuilder
        self.comp_count += 1


def create_resnet_32x32(
    model, data, num_input_channels, num_groups, num_labels, is_test=False
):
    '''
    Create residual net for smaller images (sec 4.2 of He et. al (2015))
    num_groups = 'n' in the paper
    '''
    # conv1 + maxpool
    brew.conv(
        model, data, 'conv1', num_input_channels, 16, kernel=3, stride=1
    )
    brew.spatial_bn(
        model, 'conv1', 'conv1_spatbn', 16, epsilon=1e-3, is_test=is_test
    )
    brew.relu(model, 'conv1_spatbn', 'relu1')

    # Number of blocks as described in sec 4.2
    filters = [16, 32, 64]

    builder = ResNetBuilder(model, 'relu1', no_bias=0, is_test=is_test)
    prev_filters = 16
    for groupidx in range(0, 3):
        for blockidx in range(0, 2 * num_groups):
            builder.add_simple_block(
                prev_filters if blockidx == 0 else filters[groupidx],
                filters[groupidx],
                down_sampling=(True if blockidx == 0 and
                               groupidx > 0 else False))
        prev_filters = filters[groupidx]

    # Final layers
    brew.average_pool(
        model, builder.prev_blob, 'final_avg', kernel=8, stride=1
    )
    brew.fc(model, 'final_avg', 'last_out', 64, num_labels)
    softmax = brew.softmax(model, 'last_out', 'softmax')
    return softmax


RESNEXT_BLOCK_CONFIG = {
    18: (2, 2, 2, 2),
    34: (3, 4, 6, 3),
    50: (3, 4, 6, 3),
    101: (3, 4, 23, 3),
    152: (3, 8, 36, 3),
    200: (3, 24, 36, 3),
}

RESNEXT_STRIDES = [1, 2, 2, 2]

logging.basicConfig()
log = logging.getLogger("resnext_builder")
log.setLevel(logging.DEBUG)


# The conv1 and final_avg kernel/stride args provide a basic mechanism for
# adapting resnet50 for different sizes of input images.
def create_resnext(
    model,
    data,
    num_input_channels,
    num_labels,
    num_layers,
    num_groups,
    num_width_per_group,
    label=None,
    is_test=False,
    no_loss=False,
    no_bias=1,
    conv1_kernel=7,
    conv1_stride=2,
    final_avg_kernel=7,
    log=None,
    bn_epsilon=1e-5,
    bn_momentum=0.9,
):
    if num_layers not in RESNEXT_BLOCK_CONFIG:
        log.error("{}-layer is invalid for resnext config".format(num_layers))

    num_blocks = RESNEXT_BLOCK_CONFIG[num_layers]
    strides = RESNEXT_STRIDES
    num_filters = [64, 256, 512, 1024, 2048]

    if num_layers in [18, 34]:
        num_filters = [64, 64, 128, 256, 512]

    # the number of features before the last FC layer
    num_features = num_filters[-1]

    # conv1 + maxpool
    conv_blob = brew.conv(
        model,
        data,
        'conv1',
        num_input_channels,
        num_filters[0],
        weight_init=("MSRAFill", {}),
        kernel=conv1_kernel,
        stride=conv1_stride,
        pad=3,
        no_bias=no_bias
    )

    bn_blob = brew.spatial_bn(
        model,
        conv_blob,
        'conv1_spatbn_relu',
        num_filters[0],
        epsilon=bn_epsilon,
        momentum=bn_momentum,
        is_test=is_test
    )
    relu_blob = brew.relu(model, bn_blob, bn_blob)
    max_pool = brew.max_pool(model, relu_blob, 'pool1', kernel=3, stride=2, pad=1)

    # Residual blocks...
    builder = ResNetBuilder(model, max_pool, no_bias=no_bias,
                            is_test=is_test, bn_epsilon=1e-5, bn_momentum=0.9)

    inner_dim = num_groups * num_width_per_group

    # 4 different kinds of residual blocks
    for residual_idx in range(4):
        residual_num = num_blocks[residual_idx]
        residual_stride = strides[residual_idx]
        dim_in = num_filters[residual_idx]

        for blk_idx in range(residual_num):
            dim_in = builder.add_bottleneck(
                dim_in,
                inner_dim,
                num_filters[residual_idx + 1],  # dim out
                stride=residual_stride if blk_idx == 0 else 1,
                group=num_groups,
            )

        inner_dim *= 2

    # Final layers
    final_avg = brew.average_pool(
        model,
        builder.prev_blob,
        'final_avg',
        kernel=final_avg_kernel,
        stride=1,
        global_pooling=True,
    )

    # Final dimension of the "image" is reduced to 7x7
    last_out = brew.fc(
        model, final_avg, 'last_out_L{}'.format(num_labels), num_features, num_labels
    )

    if no_loss:
        return last_out

    # If we create model for training, use softmax-with-loss
    if (label is not None):
        (softmax, loss) = model.SoftmaxWithLoss(
            [last_out, label],
            ["softmax", "loss"],
        )

        return (softmax, loss)
    else:
        # For inference, we just return softmax
        return brew.softmax(model, last_out, "softmax")


# The conv1 and final_avg kernel/stride args provide a basic mechanism for
# adapting resnet50 for different sizes of input images.
def create_resnet50(
    model,
    data,
    num_input_channels,
    num_labels,
    label=None,
    is_test=False,
    no_loss=False,
    no_bias=0,
    conv1_kernel=7,
    conv1_stride=2,
    final_avg_kernel=7,
):
    # resnet50 is a special case for ResNeXt50-1x64d
    return create_resnext(
        model,
        data,
        num_input_channels,
        num_labels,
        num_layers=50,
        num_groups=1,
        num_width_per_group=64,
        label=label,
        is_test=is_test,
        no_loss=no_loss,
        no_bias=no_bias,
        conv1_kernel=conv1_kernel,
        conv1_stride=conv1_stride,
        final_avg_kernel=final_avg_kernel,
    )