File: seq2seq_util.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (672 lines) | stat: -rw-r--r-- 20,233 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
## @package seq2seq_util
# Module caffe2.python.examples.seq2seq_util
""" A bunch of util functions to build Seq2Seq models with Caffe2."""






import collections
from future.utils import viewitems

import caffe2.proto.caffe2_pb2 as caffe2_pb2
from caffe2.python import attention, core, rnn_cell, brew


PAD_ID = 0
PAD = '<PAD>'
GO_ID = 1
GO = '<GO>'
EOS_ID = 2
EOS = '<EOS>'
UNK_ID = 3
UNK = '<UNK>'


def gen_vocab(corpus, unk_threshold):
    vocab = collections.defaultdict(lambda: len(vocab))
    freqs = collections.defaultdict(lambda: 0)
    # Adding padding tokens to the vocabulary to maintain consistency with IDs
    vocab[PAD]
    vocab[GO]
    vocab[EOS]
    vocab[UNK]

    with open(corpus) as f:
        for sentence in f:
            tokens = sentence.strip().split()
            for token in tokens:
                freqs[token] += 1
    for token, freq in viewitems(freqs):
        if freq > unk_threshold:
            vocab[token]

    return vocab


def get_numberized_sentence(sentence, vocab):
    numerized_sentence = []
    for token in sentence.strip().split():
        if token in vocab:
            numerized_sentence.append(vocab[token])
        else:
            numerized_sentence.append(vocab[UNK])
    return numerized_sentence


def rnn_unidirectional_layer(
    model,
    inputs,
    input_lengths,
    input_size,
    num_units,
    dropout_keep_prob,
    forward_only,
    return_sequence_output,
    return_final_state,
    scope=None,
):
    """ Unidirectional LSTM encoder."""
    with core.NameScope(scope):
        initial_cell_state = model.param_init_net.ConstantFill(
            [],
            'initial_cell_state',
            shape=[num_units],
            value=0.0,
        )
        initial_hidden_state = model.param_init_net.ConstantFill(
            [],
            'initial_hidden_state',
            shape=[num_units],
            value=0.0,
        )

    cell = rnn_cell.LSTMCell(
        input_size=input_size,
        hidden_size=num_units,
        forget_bias=0.0,
        memory_optimization=False,
        name=(scope + '/' if scope else '') + 'lstm',
        forward_only=forward_only,
    )

    dropout_ratio = (
        None if dropout_keep_prob is None else (1.0 - dropout_keep_prob)
    )
    if dropout_ratio is not None:
        cell = rnn_cell.DropoutCell(
            internal_cell=cell,
            dropout_ratio=dropout_ratio,
            name=(scope + '/' if scope else '') + 'dropout',
            forward_only=forward_only,
            is_test=False,
        )

    outputs_with_grads = []
    if return_sequence_output:
        outputs_with_grads.append(0)
    if return_final_state:
        outputs_with_grads.extend([1, 3])

    outputs, (_, final_hidden_state, _, final_cell_state) = (
        cell.apply_over_sequence(
            model=model,
            inputs=inputs,
            seq_lengths=input_lengths,
            initial_states=(initial_hidden_state, initial_cell_state),
            outputs_with_grads=outputs_with_grads,
        )
    )
    return outputs, final_hidden_state, final_cell_state


def rnn_bidirectional_layer(
    model,
    inputs,
    input_lengths,
    input_size,
    num_units,
    dropout_keep_prob,
    forward_only,
    return_sequence_output,
    return_final_state,
    scope=None,
):
    outputs_fw, final_hidden_fw, final_cell_fw = rnn_unidirectional_layer(
        model,
        inputs,
        input_lengths,
        input_size,
        num_units,
        dropout_keep_prob,
        forward_only,
        return_sequence_output,
        return_final_state,
        scope=(scope + '/' if scope else '') + 'fw',
    )
    with core.NameScope(scope):
        reversed_inputs = model.net.ReversePackedSegs(
            [inputs, input_lengths],
            ['reversed_inputs'],
        )
    outputs_bw, final_hidden_bw, final_cell_bw = rnn_unidirectional_layer(
        model,
        reversed_inputs,
        input_lengths,
        input_size,
        num_units,
        dropout_keep_prob,
        forward_only,
        return_sequence_output,
        return_final_state,
        scope=(scope + '/' if scope else '') + 'bw',
    )
    with core.NameScope(scope):
        outputs_bw = model.net.ReversePackedSegs(
            [outputs_bw, input_lengths],
            ['outputs_bw'],
        )

    # Concatenate forward and backward results
    if return_sequence_output:
        with core.NameScope(scope):
            outputs, _ = model.net.Concat(
                [outputs_fw, outputs_bw],
                ['outputs', 'outputs_dim'],
                axis=2,
            )
    else:
        outputs = None

    if return_final_state:
        with core.NameScope(scope):
            final_hidden_state, _ = model.net.Concat(
                [final_hidden_fw, final_hidden_bw],
                ['final_hidden_state', 'final_hidden_state_dim'],
                axis=2,
            )
            final_cell_state, _ = model.net.Concat(
                [final_cell_fw, final_cell_bw],
                ['final_cell_state', 'final_cell_state_dim'],
                axis=2,
            )
    else:
        final_hidden_state = None
        final_cell_state = None

    return outputs, final_hidden_state, final_cell_state


def build_embeddings(
    model,
    vocab_size,
    embedding_size,
    name,
    freeze_embeddings,
):
    embeddings = model.param_init_net.GaussianFill(
        [],
        name,
        shape=[vocab_size, embedding_size],
        std=0.1,
    )
    if not freeze_embeddings:
        model.params.append(embeddings)
    return embeddings


def get_layer_scope(scope, layer_type, i):
    prefix = (scope + '/' if scope else '') + layer_type
    return '{}/layer{}'.format(prefix, i)


def build_embedding_encoder(
    model,
    encoder_params,
    num_decoder_layers,
    inputs,
    input_lengths,
    vocab_size,
    embeddings,
    embedding_size,
    use_attention,
    num_gpus=0,
    forward_only=False,
    scope=None,
):
    with core.NameScope(scope or ''):
        if num_gpus == 0:
            embedded_encoder_inputs = model.net.Gather(
                [embeddings, inputs],
                ['embedded_encoder_inputs'],
            )
        else:
            with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
                embedded_encoder_inputs_cpu = model.net.Gather(
                    [embeddings, inputs],
                    ['embedded_encoder_inputs_cpu'],
                )
            embedded_encoder_inputs = model.CopyCPUToGPU(
                embedded_encoder_inputs_cpu,
                'embedded_encoder_inputs',
            )

    layer_inputs = embedded_encoder_inputs
    layer_input_size = embedding_size
    encoder_units_per_layer = []
    final_encoder_hidden_states = []
    final_encoder_cell_states = []

    num_encoder_layers = len(encoder_params['encoder_layer_configs'])
    use_bidirectional_encoder = encoder_params.get(
        'use_bidirectional_encoder',
        False,
    )

    for i, layer_config in enumerate(encoder_params['encoder_layer_configs']):

        if use_bidirectional_encoder and i == 0:
            layer_func = rnn_bidirectional_layer
            output_dims = 2 * layer_config['num_units']
        else:
            layer_func = rnn_unidirectional_layer
            output_dims = layer_config['num_units']
        encoder_units_per_layer.append(output_dims)

        is_final_layer = (i == num_encoder_layers - 1)

        dropout_keep_prob = layer_config.get(
            'dropout_keep_prob',
            None,
        )

        return_final_state = i >= (num_encoder_layers - num_decoder_layers)
        (
            layer_outputs,
            final_layer_hidden_state,
            final_layer_cell_state,
        ) = layer_func(
            model=model,
            inputs=layer_inputs,
            input_lengths=input_lengths,
            input_size=layer_input_size,
            num_units=layer_config['num_units'],
            dropout_keep_prob=dropout_keep_prob,
            forward_only=forward_only,
            return_sequence_output=(not is_final_layer) or use_attention,
            return_final_state=return_final_state,
            scope=get_layer_scope(scope, 'encoder', i),
        )

        if not is_final_layer:
            layer_inputs = layer_outputs
            layer_input_size = output_dims
        final_encoder_hidden_states.append(final_layer_hidden_state)
        final_encoder_cell_states.append(final_layer_cell_state)

    encoder_outputs = layer_outputs
    weighted_encoder_outputs = None

    return (
        encoder_outputs,
        weighted_encoder_outputs,
        final_encoder_hidden_states,
        final_encoder_cell_states,
        encoder_units_per_layer,
    )


class LSTMWithAttentionDecoder(object):

    def scope(self, name):
        return self.name + '/' + name if self.name is not None else name

    def _get_attention_type(self, attention_type_as_string):
        if attention_type_as_string == 'regular':
            return attention.AttentionType.Regular
        elif attention_type_as_string == 'recurrent':
            return attention.AttentionType.Recurrent
        else:
            assert False, 'Unknown type ' + attention_type_as_string

    def __init__(
        self,
        encoder_outputs,
        encoder_output_dim,
        encoder_lengths,
        vocab_size,
        attention_type,
        embedding_size,
        decoder_num_units,
        decoder_cells,
        residual_output_layers=None,
        name=None,
        weighted_encoder_outputs=None,
    ):
        self.name = name
        self.num_layers = len(decoder_cells)
        if attention_type == 'none':
            self.cell = rnn_cell.MultiRNNCell(
                decoder_cells,
                name=self.scope('decoder'),
                residual_output_layers=residual_output_layers,
            )
            self.use_attention = False
            self.decoder_output_dim = decoder_num_units
            self.output_indices = self.cell.output_indices
        else:
            decoder_cell = rnn_cell.MultiRNNCell(
                decoder_cells,
                name=self.scope('decoder'),
                residual_output_layers=residual_output_layers,
            )
            self.cell = rnn_cell.AttentionCell(
                encoder_output_dim=encoder_output_dim,
                encoder_outputs=encoder_outputs,
                encoder_lengths=encoder_lengths,
                decoder_cell=decoder_cell,
                decoder_state_dim=decoder_num_units,
                name=self.scope('attention_decoder'),
                attention_type=self._get_attention_type(attention_type),
                weighted_encoder_outputs=weighted_encoder_outputs,
                attention_memory_optimization=True,
            )
            self.use_attention = True
            self.decoder_output_dim = decoder_num_units + encoder_output_dim

            self.output_indices = decoder_cell.output_indices
            self.output_indices.append(2 * self.num_layers)

    def get_state_names(self):
        return self.cell.get_state_names()

    def get_outputs_with_grads(self):
        # sequence (all) output locations are at twice their state index
        return [2 * i for i in self.output_indices]

    def get_output_dim(self):
        return self.decoder_output_dim

    def get_attention_weights(self):
        assert self.use_attention
        # [batch_size, encoder_length, 1]
        return self.cell.get_attention_weights()

    def apply(
        self,
        model,
        input_t,
        seq_lengths,
        states,
        timestep,
    ):
        return self.cell.apply(
            model=model,
            input_t=input_t,
            seq_lengths=seq_lengths,
            states=states,
            timestep=timestep,
        )

    def apply_over_sequence(
        self,
        model,
        inputs,
        seq_lengths,
        initial_states,
    ):
        return self.cell.apply_over_sequence(
            model=model,
            inputs=inputs,
            seq_lengths=seq_lengths,
            initial_states=initial_states,
            outputs_with_grads=self.get_outputs_with_grads(),
        )


def build_initial_rnn_decoder_states(
    model,
    encoder_units_per_layer,
    decoder_units_per_layer,
    final_encoder_hidden_states,
    final_encoder_cell_states,
    use_attention,
):
    num_encoder_layers = len(encoder_units_per_layer)
    num_decoder_layers = len(decoder_units_per_layer)
    if num_encoder_layers > num_decoder_layers:
        offset = num_encoder_layers - num_decoder_layers
    else:
        offset = 0

    initial_states = []
    for i, decoder_num_units in enumerate(decoder_units_per_layer):

        if (
            final_encoder_hidden_states and
            len(final_encoder_hidden_states) > (i + offset)
        ):
            final_encoder_hidden_state = final_encoder_hidden_states[i + offset]
        else:
            final_encoder_hidden_state = None

        if final_encoder_hidden_state is None:
            decoder_initial_hidden_state = model.param_init_net.ConstantFill(
                [],
                'decoder_initial_hidden_state_{}'.format(i),
                shape=[decoder_num_units],
                value=0.0,
            )
            model.params.append(decoder_initial_hidden_state)
        elif decoder_num_units != encoder_units_per_layer[i + offset]:
            decoder_initial_hidden_state = brew.fc(
                model,
                final_encoder_hidden_state,
                'decoder_initial_hidden_state_{}'.format(i),
                encoder_units_per_layer[i + offset],
                decoder_num_units,
                axis=2,
            )
        else:
            decoder_initial_hidden_state = final_encoder_hidden_state
        initial_states.append(decoder_initial_hidden_state)

        if (
            final_encoder_cell_states and
            len(final_encoder_cell_states) > (i + offset)
        ):
            final_encoder_cell_state = final_encoder_cell_states[i + offset]
        else:
            final_encoder_cell_state = None

        if final_encoder_cell_state is None:
            decoder_initial_cell_state = model.param_init_net.ConstantFill(
                [],
                'decoder_initial_cell_state_{}'.format(i),
                shape=[decoder_num_units],
                value=0.0,
            )
            model.params.append(decoder_initial_cell_state)
        elif decoder_num_units != encoder_units_per_layer[i + offset]:
            decoder_initial_cell_state = brew.fc(
                model,
                final_encoder_cell_state,
                'decoder_initial_cell_state_{}'.format(i),
                encoder_units_per_layer[i + offset],
                decoder_num_units,
                axis=2,
            )
        else:
            decoder_initial_cell_state = final_encoder_cell_state
        initial_states.append(decoder_initial_cell_state)

    if use_attention:
        initial_attention_weighted_encoder_context = (
            model.param_init_net.ConstantFill(
                [],
                'initial_attention_weighted_encoder_context',
                shape=[encoder_units_per_layer[-1]],
                value=0.0,
            )
        )
        model.params.append(initial_attention_weighted_encoder_context)
        initial_states.append(initial_attention_weighted_encoder_context)

    return initial_states


def build_embedding_decoder(
    model,
    decoder_layer_configs,
    inputs,
    input_lengths,
    encoder_lengths,
    encoder_outputs,
    weighted_encoder_outputs,
    final_encoder_hidden_states,
    final_encoder_cell_states,
    encoder_units_per_layer,
    vocab_size,
    embeddings,
    embedding_size,
    attention_type,
    forward_only,
    num_gpus=0,
    scope=None,
):
    with core.NameScope(scope or ''):
        if num_gpus == 0:
            embedded_decoder_inputs = model.net.Gather(
                [embeddings, inputs],
                ['embedded_decoder_inputs'],
            )
        else:
            with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
                embedded_decoder_inputs_cpu = model.net.Gather(
                    [embeddings, inputs],
                    ['embedded_decoder_inputs_cpu'],
                )
            embedded_decoder_inputs = model.CopyCPUToGPU(
                embedded_decoder_inputs_cpu,
                'embedded_decoder_inputs',
            )

    decoder_cells = []
    decoder_units_per_layer = []
    for i, layer_config in enumerate(decoder_layer_configs):
        num_units = layer_config['num_units']
        decoder_units_per_layer.append(num_units)

        if i == 0:
            input_size = embedding_size
        else:
            input_size = decoder_cells[-1].get_output_dim()

        cell = rnn_cell.LSTMCell(
            forward_only=forward_only,
            input_size=input_size,
            hidden_size=num_units,
            forget_bias=0.0,
            memory_optimization=False,
        )

        dropout_keep_prob = layer_config.get('dropout_keep_prob', None)
        if dropout_keep_prob is not None:
            dropout_ratio = 1.0 - layer_config.dropout_keep_prob
            cell = rnn_cell.DropoutCell(
                internal_cell=cell,
                dropout_ratio=dropout_ratio,
                forward_only=forward_only,
                is_test=False,
                name=get_layer_scope(scope, 'decoder_dropout', i),
            )

        decoder_cells.append(cell)

    states = build_initial_rnn_decoder_states(
        model=model,
        encoder_units_per_layer=encoder_units_per_layer,
        decoder_units_per_layer=decoder_units_per_layer,
        final_encoder_hidden_states=final_encoder_hidden_states,
        final_encoder_cell_states=final_encoder_cell_states,
        use_attention=(attention_type != 'none'),
    )
    attention_decoder = LSTMWithAttentionDecoder(
        encoder_outputs=encoder_outputs,
        encoder_output_dim=encoder_units_per_layer[-1],
        encoder_lengths=encoder_lengths,
        vocab_size=vocab_size,
        attention_type=attention_type,
        embedding_size=embedding_size,
        decoder_num_units=decoder_units_per_layer[-1],
        decoder_cells=decoder_cells,
        weighted_encoder_outputs=weighted_encoder_outputs,
        name=scope,
    )
    decoder_outputs, _ = attention_decoder.apply_over_sequence(
        model=model,
        inputs=embedded_decoder_inputs,
        seq_lengths=input_lengths,
        initial_states=states,
    )

    # we do softmax over the whole sequence
    # (max_length in the batch * batch_size) x decoder embedding size
    # -1 because we don't know max_length yet
    decoder_outputs_flattened, _ = model.net.Reshape(
        [decoder_outputs],
        [
            'decoder_outputs_flattened',
            'decoder_outputs_and_contexts_combination_old_shape',
        ],
        shape=[-1, attention_decoder.get_output_dim()],
    )

    decoder_outputs = decoder_outputs_flattened
    decoder_output_dim = attention_decoder.get_output_dim()

    return (decoder_outputs, decoder_output_dim)


def output_projection(
    model,
    decoder_outputs,
    decoder_output_size,
    target_vocab_size,
    decoder_softmax_size,
):
    if decoder_softmax_size is not None:
        decoder_outputs = brew.fc(
            model,
            decoder_outputs,
            'decoder_outputs_scaled',
            dim_in=decoder_output_size,
            dim_out=decoder_softmax_size,
        )
        decoder_output_size = decoder_softmax_size

    output_projection_w = model.param_init_net.XavierFill(
        [],
        'output_projection_w',
        shape=[target_vocab_size, decoder_output_size],
    )

    output_projection_b = model.param_init_net.XavierFill(
        [],
        'output_projection_b',
        shape=[target_vocab_size],
    )
    model.params.extend([
        output_projection_w,
        output_projection_b,
    ])
    output_logits = model.net.FC(
        [
            decoder_outputs,
            output_projection_w,
            output_projection_b,
        ],
        ['output_logits'],
    )
    return output_logits