1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
|
## @package seq2seq_util
# Module caffe2.python.examples.seq2seq_util
""" A bunch of util functions to build Seq2Seq models with Caffe2."""
import collections
from future.utils import viewitems
import caffe2.proto.caffe2_pb2 as caffe2_pb2
from caffe2.python import attention, core, rnn_cell, brew
PAD_ID = 0
PAD = '<PAD>'
GO_ID = 1
GO = '<GO>'
EOS_ID = 2
EOS = '<EOS>'
UNK_ID = 3
UNK = '<UNK>'
def gen_vocab(corpus, unk_threshold):
vocab = collections.defaultdict(lambda: len(vocab))
freqs = collections.defaultdict(lambda: 0)
# Adding padding tokens to the vocabulary to maintain consistency with IDs
vocab[PAD]
vocab[GO]
vocab[EOS]
vocab[UNK]
with open(corpus) as f:
for sentence in f:
tokens = sentence.strip().split()
for token in tokens:
freqs[token] += 1
for token, freq in viewitems(freqs):
if freq > unk_threshold:
vocab[token]
return vocab
def get_numberized_sentence(sentence, vocab):
numerized_sentence = []
for token in sentence.strip().split():
if token in vocab:
numerized_sentence.append(vocab[token])
else:
numerized_sentence.append(vocab[UNK])
return numerized_sentence
def rnn_unidirectional_layer(
model,
inputs,
input_lengths,
input_size,
num_units,
dropout_keep_prob,
forward_only,
return_sequence_output,
return_final_state,
scope=None,
):
""" Unidirectional LSTM encoder."""
with core.NameScope(scope):
initial_cell_state = model.param_init_net.ConstantFill(
[],
'initial_cell_state',
shape=[num_units],
value=0.0,
)
initial_hidden_state = model.param_init_net.ConstantFill(
[],
'initial_hidden_state',
shape=[num_units],
value=0.0,
)
cell = rnn_cell.LSTMCell(
input_size=input_size,
hidden_size=num_units,
forget_bias=0.0,
memory_optimization=False,
name=(scope + '/' if scope else '') + 'lstm',
forward_only=forward_only,
)
dropout_ratio = (
None if dropout_keep_prob is None else (1.0 - dropout_keep_prob)
)
if dropout_ratio is not None:
cell = rnn_cell.DropoutCell(
internal_cell=cell,
dropout_ratio=dropout_ratio,
name=(scope + '/' if scope else '') + 'dropout',
forward_only=forward_only,
is_test=False,
)
outputs_with_grads = []
if return_sequence_output:
outputs_with_grads.append(0)
if return_final_state:
outputs_with_grads.extend([1, 3])
outputs, (_, final_hidden_state, _, final_cell_state) = (
cell.apply_over_sequence(
model=model,
inputs=inputs,
seq_lengths=input_lengths,
initial_states=(initial_hidden_state, initial_cell_state),
outputs_with_grads=outputs_with_grads,
)
)
return outputs, final_hidden_state, final_cell_state
def rnn_bidirectional_layer(
model,
inputs,
input_lengths,
input_size,
num_units,
dropout_keep_prob,
forward_only,
return_sequence_output,
return_final_state,
scope=None,
):
outputs_fw, final_hidden_fw, final_cell_fw = rnn_unidirectional_layer(
model,
inputs,
input_lengths,
input_size,
num_units,
dropout_keep_prob,
forward_only,
return_sequence_output,
return_final_state,
scope=(scope + '/' if scope else '') + 'fw',
)
with core.NameScope(scope):
reversed_inputs = model.net.ReversePackedSegs(
[inputs, input_lengths],
['reversed_inputs'],
)
outputs_bw, final_hidden_bw, final_cell_bw = rnn_unidirectional_layer(
model,
reversed_inputs,
input_lengths,
input_size,
num_units,
dropout_keep_prob,
forward_only,
return_sequence_output,
return_final_state,
scope=(scope + '/' if scope else '') + 'bw',
)
with core.NameScope(scope):
outputs_bw = model.net.ReversePackedSegs(
[outputs_bw, input_lengths],
['outputs_bw'],
)
# Concatenate forward and backward results
if return_sequence_output:
with core.NameScope(scope):
outputs, _ = model.net.Concat(
[outputs_fw, outputs_bw],
['outputs', 'outputs_dim'],
axis=2,
)
else:
outputs = None
if return_final_state:
with core.NameScope(scope):
final_hidden_state, _ = model.net.Concat(
[final_hidden_fw, final_hidden_bw],
['final_hidden_state', 'final_hidden_state_dim'],
axis=2,
)
final_cell_state, _ = model.net.Concat(
[final_cell_fw, final_cell_bw],
['final_cell_state', 'final_cell_state_dim'],
axis=2,
)
else:
final_hidden_state = None
final_cell_state = None
return outputs, final_hidden_state, final_cell_state
def build_embeddings(
model,
vocab_size,
embedding_size,
name,
freeze_embeddings,
):
embeddings = model.param_init_net.GaussianFill(
[],
name,
shape=[vocab_size, embedding_size],
std=0.1,
)
if not freeze_embeddings:
model.params.append(embeddings)
return embeddings
def get_layer_scope(scope, layer_type, i):
prefix = (scope + '/' if scope else '') + layer_type
return '{}/layer{}'.format(prefix, i)
def build_embedding_encoder(
model,
encoder_params,
num_decoder_layers,
inputs,
input_lengths,
vocab_size,
embeddings,
embedding_size,
use_attention,
num_gpus=0,
forward_only=False,
scope=None,
):
with core.NameScope(scope or ''):
if num_gpus == 0:
embedded_encoder_inputs = model.net.Gather(
[embeddings, inputs],
['embedded_encoder_inputs'],
)
else:
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
embedded_encoder_inputs_cpu = model.net.Gather(
[embeddings, inputs],
['embedded_encoder_inputs_cpu'],
)
embedded_encoder_inputs = model.CopyCPUToGPU(
embedded_encoder_inputs_cpu,
'embedded_encoder_inputs',
)
layer_inputs = embedded_encoder_inputs
layer_input_size = embedding_size
encoder_units_per_layer = []
final_encoder_hidden_states = []
final_encoder_cell_states = []
num_encoder_layers = len(encoder_params['encoder_layer_configs'])
use_bidirectional_encoder = encoder_params.get(
'use_bidirectional_encoder',
False,
)
for i, layer_config in enumerate(encoder_params['encoder_layer_configs']):
if use_bidirectional_encoder and i == 0:
layer_func = rnn_bidirectional_layer
output_dims = 2 * layer_config['num_units']
else:
layer_func = rnn_unidirectional_layer
output_dims = layer_config['num_units']
encoder_units_per_layer.append(output_dims)
is_final_layer = (i == num_encoder_layers - 1)
dropout_keep_prob = layer_config.get(
'dropout_keep_prob',
None,
)
return_final_state = i >= (num_encoder_layers - num_decoder_layers)
(
layer_outputs,
final_layer_hidden_state,
final_layer_cell_state,
) = layer_func(
model=model,
inputs=layer_inputs,
input_lengths=input_lengths,
input_size=layer_input_size,
num_units=layer_config['num_units'],
dropout_keep_prob=dropout_keep_prob,
forward_only=forward_only,
return_sequence_output=(not is_final_layer) or use_attention,
return_final_state=return_final_state,
scope=get_layer_scope(scope, 'encoder', i),
)
if not is_final_layer:
layer_inputs = layer_outputs
layer_input_size = output_dims
final_encoder_hidden_states.append(final_layer_hidden_state)
final_encoder_cell_states.append(final_layer_cell_state)
encoder_outputs = layer_outputs
weighted_encoder_outputs = None
return (
encoder_outputs,
weighted_encoder_outputs,
final_encoder_hidden_states,
final_encoder_cell_states,
encoder_units_per_layer,
)
class LSTMWithAttentionDecoder(object):
def scope(self, name):
return self.name + '/' + name if self.name is not None else name
def _get_attention_type(self, attention_type_as_string):
if attention_type_as_string == 'regular':
return attention.AttentionType.Regular
elif attention_type_as_string == 'recurrent':
return attention.AttentionType.Recurrent
else:
assert False, 'Unknown type ' + attention_type_as_string
def __init__(
self,
encoder_outputs,
encoder_output_dim,
encoder_lengths,
vocab_size,
attention_type,
embedding_size,
decoder_num_units,
decoder_cells,
residual_output_layers=None,
name=None,
weighted_encoder_outputs=None,
):
self.name = name
self.num_layers = len(decoder_cells)
if attention_type == 'none':
self.cell = rnn_cell.MultiRNNCell(
decoder_cells,
name=self.scope('decoder'),
residual_output_layers=residual_output_layers,
)
self.use_attention = False
self.decoder_output_dim = decoder_num_units
self.output_indices = self.cell.output_indices
else:
decoder_cell = rnn_cell.MultiRNNCell(
decoder_cells,
name=self.scope('decoder'),
residual_output_layers=residual_output_layers,
)
self.cell = rnn_cell.AttentionCell(
encoder_output_dim=encoder_output_dim,
encoder_outputs=encoder_outputs,
encoder_lengths=encoder_lengths,
decoder_cell=decoder_cell,
decoder_state_dim=decoder_num_units,
name=self.scope('attention_decoder'),
attention_type=self._get_attention_type(attention_type),
weighted_encoder_outputs=weighted_encoder_outputs,
attention_memory_optimization=True,
)
self.use_attention = True
self.decoder_output_dim = decoder_num_units + encoder_output_dim
self.output_indices = decoder_cell.output_indices
self.output_indices.append(2 * self.num_layers)
def get_state_names(self):
return self.cell.get_state_names()
def get_outputs_with_grads(self):
# sequence (all) output locations are at twice their state index
return [2 * i for i in self.output_indices]
def get_output_dim(self):
return self.decoder_output_dim
def get_attention_weights(self):
assert self.use_attention
# [batch_size, encoder_length, 1]
return self.cell.get_attention_weights()
def apply(
self,
model,
input_t,
seq_lengths,
states,
timestep,
):
return self.cell.apply(
model=model,
input_t=input_t,
seq_lengths=seq_lengths,
states=states,
timestep=timestep,
)
def apply_over_sequence(
self,
model,
inputs,
seq_lengths,
initial_states,
):
return self.cell.apply_over_sequence(
model=model,
inputs=inputs,
seq_lengths=seq_lengths,
initial_states=initial_states,
outputs_with_grads=self.get_outputs_with_grads(),
)
def build_initial_rnn_decoder_states(
model,
encoder_units_per_layer,
decoder_units_per_layer,
final_encoder_hidden_states,
final_encoder_cell_states,
use_attention,
):
num_encoder_layers = len(encoder_units_per_layer)
num_decoder_layers = len(decoder_units_per_layer)
if num_encoder_layers > num_decoder_layers:
offset = num_encoder_layers - num_decoder_layers
else:
offset = 0
initial_states = []
for i, decoder_num_units in enumerate(decoder_units_per_layer):
if (
final_encoder_hidden_states and
len(final_encoder_hidden_states) > (i + offset)
):
final_encoder_hidden_state = final_encoder_hidden_states[i + offset]
else:
final_encoder_hidden_state = None
if final_encoder_hidden_state is None:
decoder_initial_hidden_state = model.param_init_net.ConstantFill(
[],
'decoder_initial_hidden_state_{}'.format(i),
shape=[decoder_num_units],
value=0.0,
)
model.params.append(decoder_initial_hidden_state)
elif decoder_num_units != encoder_units_per_layer[i + offset]:
decoder_initial_hidden_state = brew.fc(
model,
final_encoder_hidden_state,
'decoder_initial_hidden_state_{}'.format(i),
encoder_units_per_layer[i + offset],
decoder_num_units,
axis=2,
)
else:
decoder_initial_hidden_state = final_encoder_hidden_state
initial_states.append(decoder_initial_hidden_state)
if (
final_encoder_cell_states and
len(final_encoder_cell_states) > (i + offset)
):
final_encoder_cell_state = final_encoder_cell_states[i + offset]
else:
final_encoder_cell_state = None
if final_encoder_cell_state is None:
decoder_initial_cell_state = model.param_init_net.ConstantFill(
[],
'decoder_initial_cell_state_{}'.format(i),
shape=[decoder_num_units],
value=0.0,
)
model.params.append(decoder_initial_cell_state)
elif decoder_num_units != encoder_units_per_layer[i + offset]:
decoder_initial_cell_state = brew.fc(
model,
final_encoder_cell_state,
'decoder_initial_cell_state_{}'.format(i),
encoder_units_per_layer[i + offset],
decoder_num_units,
axis=2,
)
else:
decoder_initial_cell_state = final_encoder_cell_state
initial_states.append(decoder_initial_cell_state)
if use_attention:
initial_attention_weighted_encoder_context = (
model.param_init_net.ConstantFill(
[],
'initial_attention_weighted_encoder_context',
shape=[encoder_units_per_layer[-1]],
value=0.0,
)
)
model.params.append(initial_attention_weighted_encoder_context)
initial_states.append(initial_attention_weighted_encoder_context)
return initial_states
def build_embedding_decoder(
model,
decoder_layer_configs,
inputs,
input_lengths,
encoder_lengths,
encoder_outputs,
weighted_encoder_outputs,
final_encoder_hidden_states,
final_encoder_cell_states,
encoder_units_per_layer,
vocab_size,
embeddings,
embedding_size,
attention_type,
forward_only,
num_gpus=0,
scope=None,
):
with core.NameScope(scope or ''):
if num_gpus == 0:
embedded_decoder_inputs = model.net.Gather(
[embeddings, inputs],
['embedded_decoder_inputs'],
)
else:
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
embedded_decoder_inputs_cpu = model.net.Gather(
[embeddings, inputs],
['embedded_decoder_inputs_cpu'],
)
embedded_decoder_inputs = model.CopyCPUToGPU(
embedded_decoder_inputs_cpu,
'embedded_decoder_inputs',
)
decoder_cells = []
decoder_units_per_layer = []
for i, layer_config in enumerate(decoder_layer_configs):
num_units = layer_config['num_units']
decoder_units_per_layer.append(num_units)
if i == 0:
input_size = embedding_size
else:
input_size = decoder_cells[-1].get_output_dim()
cell = rnn_cell.LSTMCell(
forward_only=forward_only,
input_size=input_size,
hidden_size=num_units,
forget_bias=0.0,
memory_optimization=False,
)
dropout_keep_prob = layer_config.get('dropout_keep_prob', None)
if dropout_keep_prob is not None:
dropout_ratio = 1.0 - layer_config.dropout_keep_prob
cell = rnn_cell.DropoutCell(
internal_cell=cell,
dropout_ratio=dropout_ratio,
forward_only=forward_only,
is_test=False,
name=get_layer_scope(scope, 'decoder_dropout', i),
)
decoder_cells.append(cell)
states = build_initial_rnn_decoder_states(
model=model,
encoder_units_per_layer=encoder_units_per_layer,
decoder_units_per_layer=decoder_units_per_layer,
final_encoder_hidden_states=final_encoder_hidden_states,
final_encoder_cell_states=final_encoder_cell_states,
use_attention=(attention_type != 'none'),
)
attention_decoder = LSTMWithAttentionDecoder(
encoder_outputs=encoder_outputs,
encoder_output_dim=encoder_units_per_layer[-1],
encoder_lengths=encoder_lengths,
vocab_size=vocab_size,
attention_type=attention_type,
embedding_size=embedding_size,
decoder_num_units=decoder_units_per_layer[-1],
decoder_cells=decoder_cells,
weighted_encoder_outputs=weighted_encoder_outputs,
name=scope,
)
decoder_outputs, _ = attention_decoder.apply_over_sequence(
model=model,
inputs=embedded_decoder_inputs,
seq_lengths=input_lengths,
initial_states=states,
)
# we do softmax over the whole sequence
# (max_length in the batch * batch_size) x decoder embedding size
# -1 because we don't know max_length yet
decoder_outputs_flattened, _ = model.net.Reshape(
[decoder_outputs],
[
'decoder_outputs_flattened',
'decoder_outputs_and_contexts_combination_old_shape',
],
shape=[-1, attention_decoder.get_output_dim()],
)
decoder_outputs = decoder_outputs_flattened
decoder_output_dim = attention_decoder.get_output_dim()
return (decoder_outputs, decoder_output_dim)
def output_projection(
model,
decoder_outputs,
decoder_output_size,
target_vocab_size,
decoder_softmax_size,
):
if decoder_softmax_size is not None:
decoder_outputs = brew.fc(
model,
decoder_outputs,
'decoder_outputs_scaled',
dim_in=decoder_output_size,
dim_out=decoder_softmax_size,
)
decoder_output_size = decoder_softmax_size
output_projection_w = model.param_init_net.XavierFill(
[],
'output_projection_w',
shape=[target_vocab_size, decoder_output_size],
)
output_projection_b = model.param_init_net.XavierFill(
[],
'output_projection_b',
shape=[target_vocab_size],
)
model.params.extend([
output_projection_w,
output_projection_b,
])
output_logits = model.net.FC(
[
decoder_outputs,
output_projection_w,
output_projection_b,
],
['output_logits'],
)
return output_logits
|