1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
|
## @package train
# Module caffe2.python.models.seq2seq.train
import argparse
import collections
import logging
import math
import numpy as np
import random
import time
import sys
import os
import caffe2.proto.caffe2_pb2 as caffe2_pb2
from caffe2.python import core, workspace, data_parallel_model
import caffe2.python.models.seq2seq.seq2seq_util as seq2seq_util
from caffe2.python.models.seq2seq.seq2seq_model_helper import Seq2SeqModelHelper
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logger.addHandler(logging.StreamHandler(sys.stderr))
Batch = collections.namedtuple('Batch', [
'encoder_inputs',
'encoder_lengths',
'decoder_inputs',
'decoder_lengths',
'targets',
'target_weights',
])
def prepare_batch(batch):
encoder_lengths = [len(entry[0]) for entry in batch]
max_encoder_length = max(encoder_lengths)
decoder_lengths = []
max_decoder_length = max([len(entry[1]) for entry in batch])
batch_encoder_inputs = []
batch_decoder_inputs = []
batch_targets = []
batch_target_weights = []
for source_seq, target_seq in batch:
encoder_pads = (
[seq2seq_util.PAD_ID] * (max_encoder_length - len(source_seq))
)
batch_encoder_inputs.append(
list(reversed(source_seq)) + encoder_pads
)
decoder_pads = (
[seq2seq_util.PAD_ID] * (max_decoder_length - len(target_seq))
)
target_seq_with_go_token = [seq2seq_util.GO_ID] + target_seq
decoder_lengths.append(len(target_seq_with_go_token))
batch_decoder_inputs.append(target_seq_with_go_token + decoder_pads)
target_seq_with_eos = target_seq + [seq2seq_util.EOS_ID]
targets = target_seq_with_eos + decoder_pads
batch_targets.append(targets)
if len(source_seq) + len(target_seq) == 0:
target_weights = [0] * len(targets)
else:
target_weights = [
1 if target != seq2seq_util.PAD_ID else 0
for target in targets
]
batch_target_weights.append(target_weights)
return Batch(
encoder_inputs=np.array(
batch_encoder_inputs,
dtype=np.int32,
).transpose(),
encoder_lengths=np.array(encoder_lengths, dtype=np.int32),
decoder_inputs=np.array(
batch_decoder_inputs,
dtype=np.int32,
).transpose(),
decoder_lengths=np.array(decoder_lengths, dtype=np.int32),
targets=np.array(
batch_targets,
dtype=np.int32,
).transpose(),
target_weights=np.array(
batch_target_weights,
dtype=np.float32,
).transpose(),
)
class Seq2SeqModelCaffe2(object):
def _build_model(
self,
init_params,
):
model = Seq2SeqModelHelper(init_params=init_params)
self._build_shared(model)
self._build_embeddings(model)
forward_model = Seq2SeqModelHelper(init_params=init_params)
self._build_shared(forward_model)
self._build_embeddings(forward_model)
if self.num_gpus == 0:
loss_blobs = self.model_build_fun(model)
model.AddGradientOperators(loss_blobs)
self.norm_clipped_grad_update(
model,
scope='norm_clipped_grad_update'
)
self.forward_model_build_fun(forward_model)
else:
assert (self.batch_size % self.num_gpus) == 0
data_parallel_model.Parallelize_GPU(
forward_model,
input_builder_fun=lambda m: None,
forward_pass_builder_fun=self.forward_model_build_fun,
param_update_builder_fun=None,
devices=list(range(self.num_gpus)),
)
def clipped_grad_update_bound(model):
self.norm_clipped_grad_update(
model,
scope='norm_clipped_grad_update',
)
data_parallel_model.Parallelize_GPU(
model,
input_builder_fun=lambda m: None,
forward_pass_builder_fun=self.model_build_fun,
param_update_builder_fun=clipped_grad_update_bound,
devices=list(range(self.num_gpus)),
)
self.norm_clipped_sparse_grad_update(
model,
scope='norm_clipped_sparse_grad_update',
)
self.model = model
self.forward_net = forward_model.net
def _build_shared(self, model):
optimizer_params = self.model_params['optimizer_params']
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
self.learning_rate = model.AddParam(
name='learning_rate',
init_value=float(optimizer_params['learning_rate']),
trainable=False,
)
self.global_step = model.AddParam(
name='global_step',
init_value=0,
trainable=False,
)
self.start_time = model.AddParam(
name='start_time',
init_value=time.time(),
trainable=False,
)
def _build_embeddings(self, model):
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
sqrt3 = math.sqrt(3)
self.encoder_embeddings = model.param_init_net.UniformFill(
[],
'encoder_embeddings',
shape=[
self.source_vocab_size,
self.model_params['encoder_embedding_size'],
],
min=-sqrt3,
max=sqrt3,
)
model.params.append(self.encoder_embeddings)
self.decoder_embeddings = model.param_init_net.UniformFill(
[],
'decoder_embeddings',
shape=[
self.target_vocab_size,
self.model_params['decoder_embedding_size'],
],
min=-sqrt3,
max=sqrt3,
)
model.params.append(self.decoder_embeddings)
def model_build_fun(self, model, forward_only=False, loss_scale=None):
encoder_inputs = model.net.AddExternalInput(
workspace.GetNameScope() + 'encoder_inputs',
)
encoder_lengths = model.net.AddExternalInput(
workspace.GetNameScope() + 'encoder_lengths',
)
decoder_inputs = model.net.AddExternalInput(
workspace.GetNameScope() + 'decoder_inputs',
)
decoder_lengths = model.net.AddExternalInput(
workspace.GetNameScope() + 'decoder_lengths',
)
targets = model.net.AddExternalInput(
workspace.GetNameScope() + 'targets',
)
target_weights = model.net.AddExternalInput(
workspace.GetNameScope() + 'target_weights',
)
attention_type = self.model_params['attention']
assert attention_type in ['none', 'regular', 'dot']
(
encoder_outputs,
weighted_encoder_outputs,
final_encoder_hidden_states,
final_encoder_cell_states,
encoder_units_per_layer,
) = seq2seq_util.build_embedding_encoder(
model=model,
encoder_params=self.encoder_params,
num_decoder_layers=len(self.model_params['decoder_layer_configs']),
inputs=encoder_inputs,
input_lengths=encoder_lengths,
vocab_size=self.source_vocab_size,
embeddings=self.encoder_embeddings,
embedding_size=self.model_params['encoder_embedding_size'],
use_attention=(attention_type != 'none'),
num_gpus=self.num_gpus,
)
(
decoder_outputs,
decoder_output_size,
) = seq2seq_util.build_embedding_decoder(
model,
decoder_layer_configs=self.model_params['decoder_layer_configs'],
inputs=decoder_inputs,
input_lengths=decoder_lengths,
encoder_lengths=encoder_lengths,
encoder_outputs=encoder_outputs,
weighted_encoder_outputs=weighted_encoder_outputs,
final_encoder_hidden_states=final_encoder_hidden_states,
final_encoder_cell_states=final_encoder_cell_states,
encoder_units_per_layer=encoder_units_per_layer,
vocab_size=self.target_vocab_size,
embeddings=self.decoder_embeddings,
embedding_size=self.model_params['decoder_embedding_size'],
attention_type=attention_type,
forward_only=False,
num_gpus=self.num_gpus,
)
output_logits = seq2seq_util.output_projection(
model=model,
decoder_outputs=decoder_outputs,
decoder_output_size=decoder_output_size,
target_vocab_size=self.target_vocab_size,
decoder_softmax_size=self.model_params['decoder_softmax_size'],
)
targets, _ = model.net.Reshape(
[targets],
['targets', 'targets_old_shape'],
shape=[-1],
)
target_weights, _ = model.net.Reshape(
[target_weights],
['target_weights', 'target_weights_old_shape'],
shape=[-1],
)
_, loss_per_word = model.net.SoftmaxWithLoss(
[output_logits, targets, target_weights],
['OutputProbs_INVALID', 'loss_per_word'],
only_loss=True,
)
num_words = model.net.SumElements(
[target_weights],
'num_words',
)
total_loss_scalar = model.net.Mul(
[loss_per_word, num_words],
'total_loss_scalar',
)
total_loss_scalar_weighted = model.net.Scale(
[total_loss_scalar],
'total_loss_scalar_weighted',
scale=1.0 / self.batch_size,
)
return [total_loss_scalar_weighted]
def forward_model_build_fun(self, model, loss_scale=None):
return self.model_build_fun(
model=model,
forward_only=True,
loss_scale=loss_scale
)
def _calc_norm_ratio(self, model, params, scope, ONE):
with core.NameScope(scope):
grad_squared_sums = []
for i, param in enumerate(params):
logger.info(param)
grad = (
model.param_to_grad[param]
if not isinstance(
model.param_to_grad[param],
core.GradientSlice,
) else model.param_to_grad[param].values
)
grad_squared = model.net.Sqr(
[grad],
'grad_{}_squared'.format(i),
)
grad_squared_sum = model.net.SumElements(
grad_squared,
'grad_{}_squared_sum'.format(i),
)
grad_squared_sums.append(grad_squared_sum)
grad_squared_full_sum = model.net.Sum(
grad_squared_sums,
'grad_squared_full_sum',
)
global_norm = model.net.Pow(
grad_squared_full_sum,
'global_norm',
exponent=0.5,
)
clip_norm = model.param_init_net.ConstantFill(
[],
'clip_norm',
shape=[],
value=float(self.model_params['max_gradient_norm']),
)
max_norm = model.net.Max(
[global_norm, clip_norm],
'max_norm',
)
norm_ratio = model.net.Div(
[clip_norm, max_norm],
'norm_ratio',
)
return norm_ratio
def _apply_norm_ratio(
self, norm_ratio, model, params, learning_rate, scope, ONE
):
for param in params:
param_grad = model.param_to_grad[param]
nlr = model.net.Negative(
[learning_rate],
'negative_learning_rate',
)
with core.NameScope(scope):
update_coeff = model.net.Mul(
[nlr, norm_ratio],
'update_coeff',
broadcast=1,
)
if isinstance(param_grad, core.GradientSlice):
param_grad_values = param_grad.values
model.net.ScatterWeightedSum(
[
param,
ONE,
param_grad.indices,
param_grad_values,
update_coeff,
],
param,
)
else:
model.net.WeightedSum(
[
param,
ONE,
param_grad,
update_coeff,
],
param,
)
def norm_clipped_grad_update(self, model, scope):
if self.num_gpus == 0:
learning_rate = self.learning_rate
else:
learning_rate = model.CopyCPUToGPU(self.learning_rate, 'LR')
params = []
for param in model.GetParams(top_scope=True):
if param in model.param_to_grad:
if not isinstance(
model.param_to_grad[param],
core.GradientSlice,
):
params.append(param)
ONE = model.param_init_net.ConstantFill(
[],
'ONE',
shape=[1],
value=1.0,
)
logger.info('Dense trainable variables: ')
norm_ratio = self._calc_norm_ratio(model, params, scope, ONE)
self._apply_norm_ratio(
norm_ratio, model, params, learning_rate, scope, ONE
)
def norm_clipped_sparse_grad_update(self, model, scope):
learning_rate = self.learning_rate
params = []
for param in model.GetParams(top_scope=True):
if param in model.param_to_grad:
if isinstance(
model.param_to_grad[param],
core.GradientSlice,
):
params.append(param)
ONE = model.param_init_net.ConstantFill(
[],
'ONE',
shape=[1],
value=1.0,
)
logger.info('Sparse trainable variables: ')
norm_ratio = self._calc_norm_ratio(model, params, scope, ONE)
self._apply_norm_ratio(
norm_ratio, model, params, learning_rate, scope, ONE
)
def total_loss_scalar(self):
if self.num_gpus == 0:
return workspace.FetchBlob('total_loss_scalar')
else:
total_loss = 0
for i in range(self.num_gpus):
name = 'gpu_{}/total_loss_scalar'.format(i)
gpu_loss = workspace.FetchBlob(name)
total_loss += gpu_loss
return total_loss
def _init_model(self):
workspace.RunNetOnce(self.model.param_init_net)
def create_net(net):
workspace.CreateNet(
net,
input_blobs=[str(i) for i in net.external_inputs],
)
create_net(self.model.net)
create_net(self.forward_net)
def __init__(
self,
model_params,
source_vocab_size,
target_vocab_size,
num_gpus=1,
num_cpus=1,
):
self.model_params = model_params
self.encoder_type = 'rnn'
self.encoder_params = model_params['encoder_type']
self.source_vocab_size = source_vocab_size
self.target_vocab_size = target_vocab_size
self.num_gpus = num_gpus
self.num_cpus = num_cpus
self.batch_size = model_params['batch_size']
workspace.GlobalInit([
'caffe2',
# NOTE: modify log level for debugging purposes
'--caffe2_log_level=0',
# NOTE: modify log level for debugging purposes
'--v=0',
# Fail gracefully if one of the threads fails
'--caffe2_handle_executor_threads_exceptions=1',
'--caffe2_mkl_num_threads=' + str(self.num_cpus),
])
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
workspace.ResetWorkspace()
def initialize_from_scratch(self):
logger.info('Initializing Seq2SeqModelCaffe2 from scratch: Start')
self._build_model(init_params=True)
self._init_model()
logger.info('Initializing Seq2SeqModelCaffe2 from scratch: Finish')
def get_current_step(self):
return workspace.FetchBlob(self.global_step)[0]
def inc_current_step(self):
workspace.FeedBlob(
self.global_step,
np.array([self.get_current_step() + 1]),
)
def step(
self,
batch,
forward_only
):
if self.num_gpus < 1:
batch_obj = prepare_batch(batch)
for batch_obj_name, batch_obj_value in zip(
Batch._fields,
batch_obj,
):
workspace.FeedBlob(batch_obj_name, batch_obj_value)
else:
for i in range(self.num_gpus):
gpu_batch = batch[i::self.num_gpus]
batch_obj = prepare_batch(gpu_batch)
for batch_obj_name, batch_obj_value in zip(
Batch._fields,
batch_obj,
):
name = 'gpu_{}/{}'.format(i, batch_obj_name)
if batch_obj_name in ['encoder_inputs', 'decoder_inputs']:
dev = core.DeviceOption(caffe2_pb2.CPU)
else:
dev = core.DeviceOption(workspace.GpuDeviceType, i)
workspace.FeedBlob(name, batch_obj_value, device_option=dev)
if forward_only:
workspace.RunNet(self.forward_net)
else:
workspace.RunNet(self.model.net)
self.inc_current_step()
return self.total_loss_scalar()
def save(self, checkpoint_path_prefix, current_step):
checkpoint_path = '{0}-{1}'.format(
checkpoint_path_prefix,
current_step,
)
assert workspace.RunOperatorOnce(core.CreateOperator(
'Save',
self.model.GetAllParams(),
[],
absolute_path=True,
db=checkpoint_path,
db_type='minidb',
))
checkpoint_config_path = os.path.join(
os.path.dirname(checkpoint_path_prefix),
'checkpoint',
)
with open(checkpoint_config_path, 'w') as checkpoint_config_file:
checkpoint_config_file.write(
'model_checkpoint_path: "' + checkpoint_path + '"\n'
'all_model_checkpoint_paths: "' + checkpoint_path + '"\n'
)
logger.info('Saved checkpoint file to ' + checkpoint_path)
return checkpoint_path
def gen_batches(source_corpus, target_corpus, source_vocab, target_vocab,
batch_size, max_length):
with open(source_corpus) as source, open(target_corpus) as target:
parallel_sentences = []
for source_sentence, target_sentence in zip(source, target):
numerized_source_sentence = seq2seq_util.get_numberized_sentence(
source_sentence,
source_vocab,
)
numerized_target_sentence = seq2seq_util.get_numberized_sentence(
target_sentence,
target_vocab,
)
if (
len(numerized_source_sentence) > 0 and
len(numerized_target_sentence) > 0 and
(
max_length is None or (
len(numerized_source_sentence) <= max_length and
len(numerized_target_sentence) <= max_length
)
)
):
parallel_sentences.append((
numerized_source_sentence,
numerized_target_sentence,
))
parallel_sentences.sort(key=lambda s_t: (len(s_t[0]), len(s_t[1])))
batches, batch = [], []
for sentence_pair in parallel_sentences:
batch.append(sentence_pair)
if len(batch) >= batch_size:
batches.append(batch)
batch = []
if len(batch) > 0:
while len(batch) < batch_size:
batch.append(batch[-1])
assert len(batch) == batch_size
batches.append(batch)
random.shuffle(batches)
return batches
def run_seq2seq_model(args, model_params=None):
source_vocab = seq2seq_util.gen_vocab(
args.source_corpus,
args.unk_threshold,
)
target_vocab = seq2seq_util.gen_vocab(
args.target_corpus,
args.unk_threshold,
)
logger.info('Source vocab size {}'.format(len(source_vocab)))
logger.info('Target vocab size {}'.format(len(target_vocab)))
batches = gen_batches(args.source_corpus, args.target_corpus, source_vocab,
target_vocab, model_params['batch_size'],
args.max_length)
logger.info('Number of training batches {}'.format(len(batches)))
batches_eval = gen_batches(args.source_corpus_eval, args.target_corpus_eval,
source_vocab, target_vocab,
model_params['batch_size'], args.max_length)
logger.info('Number of eval batches {}'.format(len(batches_eval)))
with Seq2SeqModelCaffe2(
model_params=model_params,
source_vocab_size=len(source_vocab),
target_vocab_size=len(target_vocab),
num_gpus=args.num_gpus,
num_cpus=20,
) as model_obj:
model_obj.initialize_from_scratch()
for i in range(args.epochs):
logger.info('Epoch {}'.format(i))
total_loss = 0
for batch in batches:
total_loss += model_obj.step(
batch=batch,
forward_only=False,
)
logger.info('\ttraining loss {}'.format(total_loss))
total_loss = 0
for batch in batches_eval:
total_loss += model_obj.step(
batch=batch,
forward_only=True,
)
logger.info('\teval loss {}'.format(total_loss))
if args.checkpoint is not None:
model_obj.save(args.checkpoint, i)
def main():
random.seed(31415)
parser = argparse.ArgumentParser(
description='Caffe2: Seq2Seq Training'
)
parser.add_argument('--source-corpus', type=str, default=None,
help='Path to source corpus in a text file format. Each '
'line in the file should contain a single sentence',
required=True)
parser.add_argument('--target-corpus', type=str, default=None,
help='Path to target corpus in a text file format',
required=True)
parser.add_argument('--max-length', type=int, default=None,
help='Maximal lengths of train and eval sentences')
parser.add_argument('--unk-threshold', type=int, default=50,
help='Threshold frequency under which token becomes '
'labeled unknown token')
parser.add_argument('--batch-size', type=int, default=32,
help='Training batch size')
parser.add_argument('--epochs', type=int, default=10,
help='Number of iterations over training data')
parser.add_argument('--learning-rate', type=float, default=0.5,
help='Learning rate')
parser.add_argument('--max-gradient-norm', type=float, default=1.0,
help='Max global norm of gradients at the end of each '
'backward pass. We do clipping to match the number.')
parser.add_argument('--num-gpus', type=int, default=0,
help='Number of GPUs for data parallel model')
parser.add_argument('--use-bidirectional-encoder', action='store_true',
help='Set flag to use bidirectional recurrent network '
'for first layer of encoder')
parser.add_argument('--use-attention', action='store_true',
help='Set flag to use seq2seq with attention model')
parser.add_argument('--source-corpus-eval', type=str, default=None,
help='Path to source corpus for evaluation in a text '
'file format', required=True)
parser.add_argument('--target-corpus-eval', type=str, default=None,
help='Path to target corpus for evaluation in a text '
'file format', required=True)
parser.add_argument('--encoder-cell-num-units', type=int, default=512,
help='Number of cell units per encoder layer')
parser.add_argument('--encoder-num-layers', type=int, default=2,
help='Number encoder layers')
parser.add_argument('--decoder-cell-num-units', type=int, default=512,
help='Number of cell units in the decoder layer')
parser.add_argument('--decoder-num-layers', type=int, default=2,
help='Number decoder layers')
parser.add_argument('--encoder-embedding-size', type=int, default=256,
help='Size of embedding in the encoder layer')
parser.add_argument('--decoder-embedding-size', type=int, default=512,
help='Size of embedding in the decoder layer')
parser.add_argument('--decoder-softmax-size', type=int, default=None,
help='Size of softmax layer in the decoder')
parser.add_argument('--checkpoint', type=str, default=None,
help='Path to checkpoint')
args = parser.parse_args()
encoder_layer_configs = [
dict(
num_units=args.encoder_cell_num_units,
),
] * args.encoder_num_layers
if args.use_bidirectional_encoder:
assert args.encoder_cell_num_units % 2 == 0
encoder_layer_configs[0]['num_units'] /= 2
decoder_layer_configs = [
dict(
num_units=args.decoder_cell_num_units,
),
] * args.decoder_num_layers
run_seq2seq_model(args, model_params=dict(
attention=('regular' if args.use_attention else 'none'),
decoder_layer_configs=decoder_layer_configs,
encoder_type=dict(
encoder_layer_configs=encoder_layer_configs,
use_bidirectional_encoder=args.use_bidirectional_encoder,
),
batch_size=args.batch_size,
optimizer_params=dict(
learning_rate=args.learning_rate,
),
encoder_embedding_size=args.encoder_embedding_size,
decoder_embedding_size=args.decoder_embedding_size,
decoder_softmax_size=args.decoder_softmax_size,
max_gradient_norm=args.max_gradient_norm,
))
if __name__ == '__main__':
main()
|