File: train.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (769 lines) | stat: -rw-r--r-- 27,518 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
## @package train
# Module caffe2.python.models.seq2seq.train





import argparse
import collections
import logging
import math
import numpy as np
import random
import time
import sys
import os

import caffe2.proto.caffe2_pb2 as caffe2_pb2
from caffe2.python import core, workspace, data_parallel_model
import caffe2.python.models.seq2seq.seq2seq_util as seq2seq_util
from caffe2.python.models.seq2seq.seq2seq_model_helper import Seq2SeqModelHelper


logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logger.addHandler(logging.StreamHandler(sys.stderr))

Batch = collections.namedtuple('Batch', [
    'encoder_inputs',
    'encoder_lengths',
    'decoder_inputs',
    'decoder_lengths',
    'targets',
    'target_weights',
])


def prepare_batch(batch):
    encoder_lengths = [len(entry[0]) for entry in batch]
    max_encoder_length = max(encoder_lengths)
    decoder_lengths = []
    max_decoder_length = max([len(entry[1]) for entry in batch])

    batch_encoder_inputs = []
    batch_decoder_inputs = []
    batch_targets = []
    batch_target_weights = []

    for source_seq, target_seq in batch:
        encoder_pads = (
            [seq2seq_util.PAD_ID] * (max_encoder_length - len(source_seq))
        )
        batch_encoder_inputs.append(
            list(reversed(source_seq)) + encoder_pads
        )

        decoder_pads = (
            [seq2seq_util.PAD_ID] * (max_decoder_length - len(target_seq))
        )
        target_seq_with_go_token = [seq2seq_util.GO_ID] + target_seq
        decoder_lengths.append(len(target_seq_with_go_token))
        batch_decoder_inputs.append(target_seq_with_go_token + decoder_pads)

        target_seq_with_eos = target_seq + [seq2seq_util.EOS_ID]
        targets = target_seq_with_eos + decoder_pads
        batch_targets.append(targets)

        if len(source_seq) + len(target_seq) == 0:
            target_weights = [0] * len(targets)
        else:
            target_weights = [
                1 if target != seq2seq_util.PAD_ID else 0
                for target in targets
            ]
        batch_target_weights.append(target_weights)

    return Batch(
        encoder_inputs=np.array(
            batch_encoder_inputs,
            dtype=np.int32,
        ).transpose(),
        encoder_lengths=np.array(encoder_lengths, dtype=np.int32),
        decoder_inputs=np.array(
            batch_decoder_inputs,
            dtype=np.int32,
        ).transpose(),
        decoder_lengths=np.array(decoder_lengths, dtype=np.int32),
        targets=np.array(
            batch_targets,
            dtype=np.int32,
        ).transpose(),
        target_weights=np.array(
            batch_target_weights,
            dtype=np.float32,
        ).transpose(),
    )


class Seq2SeqModelCaffe2(object):

    def _build_model(
        self,
        init_params,
    ):
        model = Seq2SeqModelHelper(init_params=init_params)
        self._build_shared(model)
        self._build_embeddings(model)

        forward_model = Seq2SeqModelHelper(init_params=init_params)
        self._build_shared(forward_model)
        self._build_embeddings(forward_model)

        if self.num_gpus == 0:
            loss_blobs = self.model_build_fun(model)
            model.AddGradientOperators(loss_blobs)
            self.norm_clipped_grad_update(
                model,
                scope='norm_clipped_grad_update'
            )
            self.forward_model_build_fun(forward_model)

        else:
            assert (self.batch_size % self.num_gpus) == 0

            data_parallel_model.Parallelize_GPU(
                forward_model,
                input_builder_fun=lambda m: None,
                forward_pass_builder_fun=self.forward_model_build_fun,
                param_update_builder_fun=None,
                devices=list(range(self.num_gpus)),
            )

            def clipped_grad_update_bound(model):
                self.norm_clipped_grad_update(
                    model,
                    scope='norm_clipped_grad_update',
                )

            data_parallel_model.Parallelize_GPU(
                model,
                input_builder_fun=lambda m: None,
                forward_pass_builder_fun=self.model_build_fun,
                param_update_builder_fun=clipped_grad_update_bound,
                devices=list(range(self.num_gpus)),
            )
        self.norm_clipped_sparse_grad_update(
            model,
            scope='norm_clipped_sparse_grad_update',
        )
        self.model = model
        self.forward_net = forward_model.net

    def _build_shared(self, model):
        optimizer_params = self.model_params['optimizer_params']
        with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
            self.learning_rate = model.AddParam(
                name='learning_rate',
                init_value=float(optimizer_params['learning_rate']),
                trainable=False,
            )
            self.global_step = model.AddParam(
                name='global_step',
                init_value=0,
                trainable=False,
            )
            self.start_time = model.AddParam(
                name='start_time',
                init_value=time.time(),
                trainable=False,
            )

    def _build_embeddings(self, model):
        with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
            sqrt3 = math.sqrt(3)
            self.encoder_embeddings = model.param_init_net.UniformFill(
                [],
                'encoder_embeddings',
                shape=[
                    self.source_vocab_size,
                    self.model_params['encoder_embedding_size'],
                ],
                min=-sqrt3,
                max=sqrt3,
            )
            model.params.append(self.encoder_embeddings)
            self.decoder_embeddings = model.param_init_net.UniformFill(
                [],
                'decoder_embeddings',
                shape=[
                    self.target_vocab_size,
                    self.model_params['decoder_embedding_size'],
                ],
                min=-sqrt3,
                max=sqrt3,
            )
            model.params.append(self.decoder_embeddings)

    def model_build_fun(self, model, forward_only=False, loss_scale=None):
        encoder_inputs = model.net.AddExternalInput(
            workspace.GetNameScope() + 'encoder_inputs',
        )
        encoder_lengths = model.net.AddExternalInput(
            workspace.GetNameScope() + 'encoder_lengths',
        )
        decoder_inputs = model.net.AddExternalInput(
            workspace.GetNameScope() + 'decoder_inputs',
        )
        decoder_lengths = model.net.AddExternalInput(
            workspace.GetNameScope() + 'decoder_lengths',
        )
        targets = model.net.AddExternalInput(
            workspace.GetNameScope() + 'targets',
        )
        target_weights = model.net.AddExternalInput(
            workspace.GetNameScope() + 'target_weights',
        )
        attention_type = self.model_params['attention']
        assert attention_type in ['none', 'regular', 'dot']

        (
            encoder_outputs,
            weighted_encoder_outputs,
            final_encoder_hidden_states,
            final_encoder_cell_states,
            encoder_units_per_layer,
        ) = seq2seq_util.build_embedding_encoder(
            model=model,
            encoder_params=self.encoder_params,
            num_decoder_layers=len(self.model_params['decoder_layer_configs']),
            inputs=encoder_inputs,
            input_lengths=encoder_lengths,
            vocab_size=self.source_vocab_size,
            embeddings=self.encoder_embeddings,
            embedding_size=self.model_params['encoder_embedding_size'],
            use_attention=(attention_type != 'none'),
            num_gpus=self.num_gpus,
        )

        (
            decoder_outputs,
            decoder_output_size,
        ) = seq2seq_util.build_embedding_decoder(
            model,
            decoder_layer_configs=self.model_params['decoder_layer_configs'],
            inputs=decoder_inputs,
            input_lengths=decoder_lengths,
            encoder_lengths=encoder_lengths,
            encoder_outputs=encoder_outputs,
            weighted_encoder_outputs=weighted_encoder_outputs,
            final_encoder_hidden_states=final_encoder_hidden_states,
            final_encoder_cell_states=final_encoder_cell_states,
            encoder_units_per_layer=encoder_units_per_layer,
            vocab_size=self.target_vocab_size,
            embeddings=self.decoder_embeddings,
            embedding_size=self.model_params['decoder_embedding_size'],
            attention_type=attention_type,
            forward_only=False,
            num_gpus=self.num_gpus,
        )

        output_logits = seq2seq_util.output_projection(
            model=model,
            decoder_outputs=decoder_outputs,
            decoder_output_size=decoder_output_size,
            target_vocab_size=self.target_vocab_size,
            decoder_softmax_size=self.model_params['decoder_softmax_size'],
        )
        targets, _ = model.net.Reshape(
            [targets],
            ['targets', 'targets_old_shape'],
            shape=[-1],
        )
        target_weights, _ = model.net.Reshape(
            [target_weights],
            ['target_weights', 'target_weights_old_shape'],
            shape=[-1],
        )
        _, loss_per_word = model.net.SoftmaxWithLoss(
            [output_logits, targets, target_weights],
            ['OutputProbs_INVALID', 'loss_per_word'],
            only_loss=True,
        )

        num_words = model.net.SumElements(
            [target_weights],
            'num_words',
        )
        total_loss_scalar = model.net.Mul(
            [loss_per_word, num_words],
            'total_loss_scalar',
        )
        total_loss_scalar_weighted = model.net.Scale(
            [total_loss_scalar],
            'total_loss_scalar_weighted',
            scale=1.0 / self.batch_size,
        )
        return [total_loss_scalar_weighted]

    def forward_model_build_fun(self, model, loss_scale=None):
        return self.model_build_fun(
            model=model,
            forward_only=True,
            loss_scale=loss_scale
        )

    def _calc_norm_ratio(self, model, params, scope, ONE):
        with core.NameScope(scope):
            grad_squared_sums = []
            for i, param in enumerate(params):
                logger.info(param)
                grad = (
                    model.param_to_grad[param]
                    if not isinstance(
                        model.param_to_grad[param],
                        core.GradientSlice,
                    ) else model.param_to_grad[param].values
                )
                grad_squared = model.net.Sqr(
                    [grad],
                    'grad_{}_squared'.format(i),
                )
                grad_squared_sum = model.net.SumElements(
                    grad_squared,
                    'grad_{}_squared_sum'.format(i),
                )
                grad_squared_sums.append(grad_squared_sum)

            grad_squared_full_sum = model.net.Sum(
                grad_squared_sums,
                'grad_squared_full_sum',
            )
            global_norm = model.net.Pow(
                grad_squared_full_sum,
                'global_norm',
                exponent=0.5,
            )
            clip_norm = model.param_init_net.ConstantFill(
                [],
                'clip_norm',
                shape=[],
                value=float(self.model_params['max_gradient_norm']),
            )
            max_norm = model.net.Max(
                [global_norm, clip_norm],
                'max_norm',
            )
            norm_ratio = model.net.Div(
                [clip_norm, max_norm],
                'norm_ratio',
            )
            return norm_ratio

    def _apply_norm_ratio(
        self, norm_ratio, model, params, learning_rate, scope, ONE
    ):
        for param in params:
            param_grad = model.param_to_grad[param]
            nlr = model.net.Negative(
                [learning_rate],
                'negative_learning_rate',
            )
            with core.NameScope(scope):
                update_coeff = model.net.Mul(
                    [nlr, norm_ratio],
                    'update_coeff',
                    broadcast=1,
                )
            if isinstance(param_grad, core.GradientSlice):
                param_grad_values = param_grad.values

                model.net.ScatterWeightedSum(
                    [
                        param,
                        ONE,
                        param_grad.indices,
                        param_grad_values,
                        update_coeff,
                    ],
                    param,
                )
            else:
                model.net.WeightedSum(
                    [
                        param,
                        ONE,
                        param_grad,
                        update_coeff,
                    ],
                    param,
                )

    def norm_clipped_grad_update(self, model, scope):

        if self.num_gpus == 0:
            learning_rate = self.learning_rate
        else:
            learning_rate = model.CopyCPUToGPU(self.learning_rate, 'LR')

        params = []
        for param in model.GetParams(top_scope=True):
            if param in model.param_to_grad:
                if not isinstance(
                    model.param_to_grad[param],
                    core.GradientSlice,
                ):
                    params.append(param)

        ONE = model.param_init_net.ConstantFill(
            [],
            'ONE',
            shape=[1],
            value=1.0,
        )
        logger.info('Dense trainable variables: ')
        norm_ratio = self._calc_norm_ratio(model, params, scope, ONE)
        self._apply_norm_ratio(
            norm_ratio, model, params, learning_rate, scope, ONE
        )

    def norm_clipped_sparse_grad_update(self, model, scope):
        learning_rate = self.learning_rate

        params = []
        for param in model.GetParams(top_scope=True):
            if param in model.param_to_grad:
                if isinstance(
                    model.param_to_grad[param],
                    core.GradientSlice,
                ):
                    params.append(param)

        ONE = model.param_init_net.ConstantFill(
            [],
            'ONE',
            shape=[1],
            value=1.0,
        )
        logger.info('Sparse trainable variables: ')
        norm_ratio = self._calc_norm_ratio(model, params, scope, ONE)
        self._apply_norm_ratio(
            norm_ratio, model, params, learning_rate, scope, ONE
        )

    def total_loss_scalar(self):
        if self.num_gpus == 0:
            return workspace.FetchBlob('total_loss_scalar')
        else:
            total_loss = 0
            for i in range(self.num_gpus):
                name = 'gpu_{}/total_loss_scalar'.format(i)
                gpu_loss = workspace.FetchBlob(name)
                total_loss += gpu_loss
            return total_loss

    def _init_model(self):
        workspace.RunNetOnce(self.model.param_init_net)

        def create_net(net):
            workspace.CreateNet(
                net,
                input_blobs=[str(i) for i in net.external_inputs],
            )

        create_net(self.model.net)
        create_net(self.forward_net)

    def __init__(
        self,
        model_params,
        source_vocab_size,
        target_vocab_size,
        num_gpus=1,
        num_cpus=1,
    ):
        self.model_params = model_params
        self.encoder_type = 'rnn'
        self.encoder_params = model_params['encoder_type']
        self.source_vocab_size = source_vocab_size
        self.target_vocab_size = target_vocab_size
        self.num_gpus = num_gpus
        self.num_cpus = num_cpus
        self.batch_size = model_params['batch_size']

        workspace.GlobalInit([
            'caffe2',
            # NOTE: modify log level for debugging purposes
            '--caffe2_log_level=0',
            # NOTE: modify log level for debugging purposes
            '--v=0',
            # Fail gracefully if one of the threads fails
            '--caffe2_handle_executor_threads_exceptions=1',
            '--caffe2_mkl_num_threads=' + str(self.num_cpus),
        ])

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        workspace.ResetWorkspace()

    def initialize_from_scratch(self):
        logger.info('Initializing Seq2SeqModelCaffe2 from scratch: Start')
        self._build_model(init_params=True)
        self._init_model()
        logger.info('Initializing Seq2SeqModelCaffe2 from scratch: Finish')

    def get_current_step(self):
        return workspace.FetchBlob(self.global_step)[0]

    def inc_current_step(self):
        workspace.FeedBlob(
            self.global_step,
            np.array([self.get_current_step() + 1]),
        )

    def step(
        self,
        batch,
        forward_only
    ):
        if self.num_gpus < 1:
            batch_obj = prepare_batch(batch)
            for batch_obj_name, batch_obj_value in zip(
                Batch._fields,
                batch_obj,
            ):
                workspace.FeedBlob(batch_obj_name, batch_obj_value)
        else:
            for i in range(self.num_gpus):
                gpu_batch = batch[i::self.num_gpus]
                batch_obj = prepare_batch(gpu_batch)
                for batch_obj_name, batch_obj_value in zip(
                    Batch._fields,
                    batch_obj,
                ):
                    name = 'gpu_{}/{}'.format(i, batch_obj_name)
                    if batch_obj_name in ['encoder_inputs', 'decoder_inputs']:
                        dev = core.DeviceOption(caffe2_pb2.CPU)
                    else:
                        dev = core.DeviceOption(workspace.GpuDeviceType, i)
                    workspace.FeedBlob(name, batch_obj_value, device_option=dev)

        if forward_only:
            workspace.RunNet(self.forward_net)
        else:
            workspace.RunNet(self.model.net)
            self.inc_current_step()

        return self.total_loss_scalar()

    def save(self, checkpoint_path_prefix, current_step):
        checkpoint_path = '{0}-{1}'.format(
            checkpoint_path_prefix,
            current_step,
        )

        assert workspace.RunOperatorOnce(core.CreateOperator(
            'Save',
            self.model.GetAllParams(),
            [],
            absolute_path=True,
            db=checkpoint_path,
            db_type='minidb',
        ))

        checkpoint_config_path = os.path.join(
            os.path.dirname(checkpoint_path_prefix),
            'checkpoint',
        )
        with open(checkpoint_config_path, 'w') as checkpoint_config_file:
            checkpoint_config_file.write(
                'model_checkpoint_path: "' + checkpoint_path + '"\n'
                'all_model_checkpoint_paths: "' + checkpoint_path + '"\n'
            )
            logger.info('Saved checkpoint file to ' + checkpoint_path)

        return checkpoint_path

def gen_batches(source_corpus, target_corpus, source_vocab, target_vocab,
                batch_size, max_length):
    with open(source_corpus) as source, open(target_corpus) as target:
        parallel_sentences = []
        for source_sentence, target_sentence in zip(source, target):
            numerized_source_sentence = seq2seq_util.get_numberized_sentence(
                source_sentence,
                source_vocab,
            )
            numerized_target_sentence = seq2seq_util.get_numberized_sentence(
                target_sentence,
                target_vocab,
            )
            if (
                len(numerized_source_sentence) > 0 and
                len(numerized_target_sentence) > 0 and
                (
                    max_length is None or (
                        len(numerized_source_sentence) <= max_length and
                        len(numerized_target_sentence) <= max_length
                    )
                )
            ):
                parallel_sentences.append((
                    numerized_source_sentence,
                    numerized_target_sentence,
                ))
    parallel_sentences.sort(key=lambda s_t: (len(s_t[0]), len(s_t[1])))

    batches, batch = [], []
    for sentence_pair in parallel_sentences:
        batch.append(sentence_pair)
        if len(batch) >= batch_size:
            batches.append(batch)
            batch = []
    if len(batch) > 0:
        while len(batch) < batch_size:
            batch.append(batch[-1])
        assert len(batch) == batch_size
        batches.append(batch)
    random.shuffle(batches)
    return batches


def run_seq2seq_model(args, model_params=None):
    source_vocab = seq2seq_util.gen_vocab(
        args.source_corpus,
        args.unk_threshold,
    )
    target_vocab = seq2seq_util.gen_vocab(
        args.target_corpus,
        args.unk_threshold,
    )
    logger.info('Source vocab size {}'.format(len(source_vocab)))
    logger.info('Target vocab size {}'.format(len(target_vocab)))

    batches = gen_batches(args.source_corpus, args.target_corpus, source_vocab,
                          target_vocab, model_params['batch_size'],
                          args.max_length)
    logger.info('Number of training batches {}'.format(len(batches)))

    batches_eval = gen_batches(args.source_corpus_eval, args.target_corpus_eval,
                               source_vocab, target_vocab,
                               model_params['batch_size'], args.max_length)
    logger.info('Number of eval batches {}'.format(len(batches_eval)))

    with Seq2SeqModelCaffe2(
        model_params=model_params,
        source_vocab_size=len(source_vocab),
        target_vocab_size=len(target_vocab),
        num_gpus=args.num_gpus,
        num_cpus=20,
    ) as model_obj:
        model_obj.initialize_from_scratch()
        for i in range(args.epochs):
            logger.info('Epoch {}'.format(i))
            total_loss = 0
            for batch in batches:
                total_loss += model_obj.step(
                    batch=batch,
                    forward_only=False,
                )
            logger.info('\ttraining loss {}'.format(total_loss))
            total_loss = 0
            for batch in batches_eval:
                total_loss += model_obj.step(
                    batch=batch,
                    forward_only=True,
                )
            logger.info('\teval loss {}'.format(total_loss))
            if args.checkpoint is not None:
                model_obj.save(args.checkpoint, i)


def main():
    random.seed(31415)
    parser = argparse.ArgumentParser(
        description='Caffe2: Seq2Seq Training'
    )
    parser.add_argument('--source-corpus', type=str, default=None,
                        help='Path to source corpus in a text file format. Each '
                        'line in the file should contain a single sentence',
                        required=True)
    parser.add_argument('--target-corpus', type=str, default=None,
                        help='Path to target corpus in a text file format',
                        required=True)
    parser.add_argument('--max-length', type=int, default=None,
                        help='Maximal lengths of train and eval sentences')
    parser.add_argument('--unk-threshold', type=int, default=50,
                        help='Threshold frequency under which token becomes '
                        'labeled unknown token')

    parser.add_argument('--batch-size', type=int, default=32,
                        help='Training batch size')
    parser.add_argument('--epochs', type=int, default=10,
                        help='Number of iterations over training data')
    parser.add_argument('--learning-rate', type=float, default=0.5,
                        help='Learning rate')
    parser.add_argument('--max-gradient-norm', type=float, default=1.0,
                        help='Max global norm of gradients at the end of each '
                        'backward pass. We do clipping to match the number.')
    parser.add_argument('--num-gpus', type=int, default=0,
                        help='Number of GPUs for data parallel model')

    parser.add_argument('--use-bidirectional-encoder', action='store_true',
                        help='Set flag to use bidirectional recurrent network '
                        'for first layer of encoder')
    parser.add_argument('--use-attention', action='store_true',
                        help='Set flag to use seq2seq with attention model')
    parser.add_argument('--source-corpus-eval', type=str, default=None,
                        help='Path to source corpus for evaluation in a text '
                        'file format', required=True)
    parser.add_argument('--target-corpus-eval', type=str, default=None,
                        help='Path to target corpus for evaluation in a text '
                        'file format', required=True)
    parser.add_argument('--encoder-cell-num-units', type=int, default=512,
                        help='Number of cell units per encoder layer')
    parser.add_argument('--encoder-num-layers', type=int, default=2,
                        help='Number encoder layers')
    parser.add_argument('--decoder-cell-num-units', type=int, default=512,
                        help='Number of cell units in the decoder layer')
    parser.add_argument('--decoder-num-layers', type=int, default=2,
                        help='Number decoder layers')
    parser.add_argument('--encoder-embedding-size', type=int, default=256,
                        help='Size of embedding in the encoder layer')
    parser.add_argument('--decoder-embedding-size', type=int, default=512,
                        help='Size of embedding in the decoder layer')
    parser.add_argument('--decoder-softmax-size', type=int, default=None,
                        help='Size of softmax layer in the decoder')

    parser.add_argument('--checkpoint', type=str, default=None,
                        help='Path to checkpoint')

    args = parser.parse_args()

    encoder_layer_configs = [
        dict(
            num_units=args.encoder_cell_num_units,
        ),
    ] * args.encoder_num_layers

    if args.use_bidirectional_encoder:
        assert args.encoder_cell_num_units % 2 == 0
        encoder_layer_configs[0]['num_units'] /= 2

    decoder_layer_configs = [
        dict(
            num_units=args.decoder_cell_num_units,
        ),
    ] * args.decoder_num_layers

    run_seq2seq_model(args, model_params=dict(
        attention=('regular' if args.use_attention else 'none'),
        decoder_layer_configs=decoder_layer_configs,
        encoder_type=dict(
            encoder_layer_configs=encoder_layer_configs,
            use_bidirectional_encoder=args.use_bidirectional_encoder,
        ),
        batch_size=args.batch_size,
        optimizer_params=dict(
            learning_rate=args.learning_rate,
        ),
        encoder_embedding_size=args.encoder_embedding_size,
        decoder_embedding_size=args.decoder_embedding_size,
        decoder_softmax_size=args.decoder_softmax_size,
        max_gradient_norm=args.max_gradient_norm,
    ))


if __name__ == '__main__':
    main()