File: translate.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (655 lines) | stat: -rw-r--r-- 24,111 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
## @package translate
# Module caffe2.python.models.seq2seq.translate





from abc import ABCMeta, abstractmethod
import argparse
from future.utils import viewitems
import logging
import numpy as np
import sys

from caffe2.python import core, rnn_cell, workspace
from caffe2.python.models.seq2seq.beam_search import BeamSearchForwardOnly
from caffe2.python.models.seq2seq.seq2seq_model_helper import Seq2SeqModelHelper
import caffe2.python.models.seq2seq.seq2seq_util as seq2seq_util


logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logger.addHandler(logging.StreamHandler(sys.stderr))


def _weighted_sum(model, values, weight, output_name):
    values_weights = zip(values, [weight] * len(values))
    values_weights_flattened = [x for v_w in values_weights for x in v_w]
    return model.net.WeightedSum(
        values_weights_flattened,
        output_name,
    )


class Seq2SeqModelCaffe2EnsembleDecoderBase(metaclass=ABCMeta):

    @abstractmethod
    def get_model_file(self, model):
        pass

    @abstractmethod
    def get_db_type(self):
        pass

    def build_word_rewards(self, vocab_size, word_reward, unk_reward):
        word_rewards = np.full([vocab_size], word_reward, dtype=np.float32)
        word_rewards[seq2seq_util.PAD_ID] = 0
        word_rewards[seq2seq_util.GO_ID] = 0
        word_rewards[seq2seq_util.EOS_ID] = 0
        word_rewards[seq2seq_util.UNK_ID] = word_reward + unk_reward
        return word_rewards

    def load_models(self):
        db_reader = 'reader'
        for model, scope_name in zip(
            self.models,
            self.decoder_scope_names,
        ):
            params_for_current_model = [
                param
                for param in self.model.GetAllParams()
                if str(param).startswith(scope_name)
            ]
            assert workspace.RunOperatorOnce(core.CreateOperator(
                'CreateDB',
                [], [db_reader],
                db=self.get_model_file(model),
                db_type=self.get_db_type())
            ), 'Failed to create db {}'.format(self.get_model_file(model))
            assert workspace.RunOperatorOnce(core.CreateOperator(
                'Load',
                [db_reader],
                params_for_current_model,
                load_all=1,
                add_prefix=scope_name + '/',
                strip_prefix='gpu_0/',
            ))
            logger.info('Model {} is loaded from a checkpoint {}'.format(
                scope_name, self.get_model_file(model)))


class Seq2SeqModelCaffe2EnsembleDecoder(Seq2SeqModelCaffe2EnsembleDecoderBase):

    def get_model_file(self, model):
        return model['model_file']

    def get_db_type(self):
        return 'minidb'

    def scope(self, scope_name, blob_name):
        return (
            scope_name + '/' + blob_name
            if scope_name is not None
            else blob_name
        )

    def _build_decoder(
        self,
        model,
        step_model,
        model_params,
        scope,
        previous_tokens,
        timestep,
        fake_seq_lengths,
    ):
        attention_type = model_params['attention']
        assert attention_type in ['none', 'regular']
        use_attention = (attention_type != 'none')

        with core.NameScope(scope):
            encoder_embeddings = seq2seq_util.build_embeddings(
                model=model,
                vocab_size=self.source_vocab_size,
                embedding_size=model_params['encoder_embedding_size'],
                name='encoder_embeddings',
                freeze_embeddings=False,
            )

        (
            encoder_outputs,
            weighted_encoder_outputs,
            final_encoder_hidden_states,
            final_encoder_cell_states,
            encoder_units_per_layer,
        ) = seq2seq_util.build_embedding_encoder(
            model=model,
            encoder_params=model_params['encoder_type'],
            num_decoder_layers=len(model_params['decoder_layer_configs']),
            inputs=self.encoder_inputs,
            input_lengths=self.encoder_lengths,
            vocab_size=self.source_vocab_size,
            embeddings=encoder_embeddings,
            embedding_size=model_params['encoder_embedding_size'],
            use_attention=use_attention,
            num_gpus=0,
            forward_only=True,
            scope=scope,
        )
        with core.NameScope(scope):
            if use_attention:
                # [max_source_length, beam_size, encoder_output_dim]
                encoder_outputs = model.net.Tile(
                    encoder_outputs,
                    'encoder_outputs_tiled',
                    tiles=self.beam_size,
                    axis=1,
                )

            if weighted_encoder_outputs is not None:
                weighted_encoder_outputs = model.net.Tile(
                    weighted_encoder_outputs,
                    'weighted_encoder_outputs_tiled',
                    tiles=self.beam_size,
                    axis=1,
                )

            decoder_embeddings = seq2seq_util.build_embeddings(
                model=model,
                vocab_size=self.target_vocab_size,
                embedding_size=model_params['decoder_embedding_size'],
                name='decoder_embeddings',
                freeze_embeddings=False,
            )
            embedded_tokens_t_prev = step_model.net.Gather(
                [decoder_embeddings, previous_tokens],
                'embedded_tokens_t_prev',
            )

        decoder_cells = []
        decoder_units_per_layer = []
        for i, layer_config in enumerate(model_params['decoder_layer_configs']):
            num_units = layer_config['num_units']
            decoder_units_per_layer.append(num_units)
            if i == 0:
                input_size = model_params['decoder_embedding_size']
            else:
                input_size = (
                    model_params['decoder_layer_configs'][i - 1]['num_units']
                )

            cell = rnn_cell.LSTMCell(
                forward_only=True,
                input_size=input_size,
                hidden_size=num_units,
                forget_bias=0.0,
                memory_optimization=False,
            )
            decoder_cells.append(cell)

        with core.NameScope(scope):
            if final_encoder_hidden_states is not None:
                for i in range(len(final_encoder_hidden_states)):
                    if final_encoder_hidden_states[i] is not None:
                        final_encoder_hidden_states[i] = model.net.Tile(
                            final_encoder_hidden_states[i],
                            'final_encoder_hidden_tiled_{}'.format(i),
                            tiles=self.beam_size,
                            axis=1,
                        )
            if final_encoder_cell_states is not None:
                for i in range(len(final_encoder_cell_states)):
                    if final_encoder_cell_states[i] is not None:
                        final_encoder_cell_states[i] = model.net.Tile(
                            final_encoder_cell_states[i],
                            'final_encoder_cell_tiled_{}'.format(i),
                            tiles=self.beam_size,
                            axis=1,
                        )
            initial_states = \
                seq2seq_util.build_initial_rnn_decoder_states(
                    model=model,
                    encoder_units_per_layer=encoder_units_per_layer,
                    decoder_units_per_layer=decoder_units_per_layer,
                    final_encoder_hidden_states=final_encoder_hidden_states,
                    final_encoder_cell_states=final_encoder_cell_states,
                    use_attention=use_attention,
                )

        attention_decoder = seq2seq_util.LSTMWithAttentionDecoder(
            encoder_outputs=encoder_outputs,
            encoder_output_dim=encoder_units_per_layer[-1],
            encoder_lengths=None,
            vocab_size=self.target_vocab_size,
            attention_type=attention_type,
            embedding_size=model_params['decoder_embedding_size'],
            decoder_num_units=decoder_units_per_layer[-1],
            decoder_cells=decoder_cells,
            weighted_encoder_outputs=weighted_encoder_outputs,
            name=scope,
        )
        states_prev = step_model.net.AddExternalInputs(*[
            '{}/{}_prev'.format(scope, s)
            for s in attention_decoder.get_state_names()
        ])
        decoder_outputs, states = attention_decoder.apply(
            model=step_model,
            input_t=embedded_tokens_t_prev,
            seq_lengths=fake_seq_lengths,
            states=states_prev,
            timestep=timestep,
        )

        state_configs = [
            BeamSearchForwardOnly.StateConfig(
                initial_value=initial_state,
                state_prev_link=BeamSearchForwardOnly.LinkConfig(
                    blob=state_prev,
                    offset=0,
                    window=1,
                ),
                state_link=BeamSearchForwardOnly.LinkConfig(
                    blob=state,
                    offset=1,
                    window=1,
                ),
            )
            for initial_state, state_prev, state in zip(
                initial_states,
                states_prev,
                states,
            )
        ]

        with core.NameScope(scope):
            decoder_outputs_flattened, _ = step_model.net.Reshape(
                [decoder_outputs],
                [
                    'decoder_outputs_flattened',
                    'decoder_outputs_and_contexts_combination_old_shape',
                ],
                shape=[-1, attention_decoder.get_output_dim()],
            )
            output_logits = seq2seq_util.output_projection(
                model=step_model,
                decoder_outputs=decoder_outputs_flattened,
                decoder_output_size=attention_decoder.get_output_dim(),
                target_vocab_size=self.target_vocab_size,
                decoder_softmax_size=model_params['decoder_softmax_size'],
            )
            # [1, beam_size, target_vocab_size]
            output_probs = step_model.net.Softmax(
                output_logits,
                'output_probs',
            )
            output_log_probs = step_model.net.Log(
                output_probs,
                'output_log_probs',
            )
            if use_attention:
                attention_weights = attention_decoder.get_attention_weights()
            else:
                attention_weights = step_model.net.ConstantFill(
                    [self.encoder_inputs],
                    'zero_attention_weights_tmp_1',
                    value=0.0,
                )
                attention_weights = step_model.net.Transpose(
                    attention_weights,
                    'zero_attention_weights_tmp_2',
                )
                attention_weights = step_model.net.Tile(
                    attention_weights,
                    'zero_attention_weights_tmp',
                    tiles=self.beam_size,
                    axis=0,
                )

        return (
            state_configs,
            output_log_probs,
            attention_weights,
        )

    def __init__(
        self,
        translate_params,
    ):
        self.models = translate_params['ensemble_models']
        decoding_params = translate_params['decoding_params']
        self.beam_size = decoding_params['beam_size']

        assert len(self.models) > 0
        source_vocab = self.models[0]['source_vocab']
        target_vocab = self.models[0]['target_vocab']
        for model in self.models:
            assert model['source_vocab'] == source_vocab
            assert model['target_vocab'] == target_vocab

        self.source_vocab_size = len(source_vocab)
        self.target_vocab_size = len(target_vocab)

        self.decoder_scope_names = [
            'model{}'.format(i) for i in range(len(self.models))
        ]

        self.model = Seq2SeqModelHelper(init_params=True)

        self.encoder_inputs = self.model.net.AddExternalInput('encoder_inputs')
        self.encoder_lengths = self.model.net.AddExternalInput(
            'encoder_lengths'
        )
        self.max_output_seq_len = self.model.net.AddExternalInput(
            'max_output_seq_len'
        )

        fake_seq_lengths = self.model.param_init_net.ConstantFill(
            [],
            'fake_seq_lengths',
            shape=[self.beam_size],
            value=100000,
            dtype=core.DataType.INT32,
        )

        beam_decoder = BeamSearchForwardOnly(
            beam_size=self.beam_size,
            model=self.model,
            go_token_id=seq2seq_util.GO_ID,
            eos_token_id=seq2seq_util.EOS_ID,
        )
        step_model = beam_decoder.get_step_model()

        state_configs = []
        output_log_probs = []
        attention_weights = []
        for model, scope_name in zip(
            self.models,
            self.decoder_scope_names,
        ):
            (
                state_configs_per_decoder,
                output_log_probs_per_decoder,
                attention_weights_per_decoder,
            ) = self._build_decoder(
                model=self.model,
                step_model=step_model,
                model_params=model['model_params'],
                scope=scope_name,
                previous_tokens=beam_decoder.get_previous_tokens(),
                timestep=beam_decoder.get_timestep(),
                fake_seq_lengths=fake_seq_lengths,
            )
            state_configs.extend(state_configs_per_decoder)
            output_log_probs.append(output_log_probs_per_decoder)
            if attention_weights_per_decoder is not None:
                attention_weights.append(attention_weights_per_decoder)

        assert len(attention_weights) > 0
        num_decoders_with_attention_blob = (
            self.model.param_init_net.ConstantFill(
                [],
                'num_decoders_with_attention_blob',
                value=1 / float(len(attention_weights)),
                shape=[1],
            )
        )
        # [beam_size, encoder_length, 1]
        attention_weights_average = _weighted_sum(
            model=step_model,
            values=attention_weights,
            weight=num_decoders_with_attention_blob,
            output_name='attention_weights_average',
        )

        num_decoders_blob = self.model.param_init_net.ConstantFill(
            [],
            'num_decoders_blob',
            value=1 / float(len(output_log_probs)),
            shape=[1],
        )
        # [beam_size, target_vocab_size]
        output_log_probs_average = _weighted_sum(
            model=step_model,
            values=output_log_probs,
            weight=num_decoders_blob,
            output_name='output_log_probs_average',
        )
        word_rewards = self.model.param_init_net.ConstantFill(
            [],
            'word_rewards',
            shape=[self.target_vocab_size],
            value=0.0,
            dtype=core.DataType.FLOAT,
        )
        (
            self.output_token_beam_list,
            self.output_prev_index_beam_list,
            self.output_score_beam_list,
            self.output_attention_weights_beam_list,
        ) = beam_decoder.apply(
            inputs=self.encoder_inputs,
            length=self.max_output_seq_len,
            log_probs=output_log_probs_average,
            attentions=attention_weights_average,
            state_configs=state_configs,
            data_dependencies=[],
            word_rewards=word_rewards,
        )

        workspace.RunNetOnce(self.model.param_init_net)
        workspace.FeedBlob(
            'word_rewards',
            self.build_word_rewards(
                vocab_size=self.target_vocab_size,
                word_reward=translate_params['decoding_params']['word_reward'],
                unk_reward=translate_params['decoding_params']['unk_reward'],
            )
        )

        workspace.CreateNet(
            self.model.net,
            input_blobs=[
                str(self.encoder_inputs),
                str(self.encoder_lengths),
                str(self.max_output_seq_len),
            ],
        )

        logger.info('Params created: ')
        for param in self.model.params:
            logger.info(param)

    def decode(self, numberized_input, max_output_seq_len):
        workspace.FeedBlob(
            self.encoder_inputs,
            np.array([
                [token_id] for token_id in reversed(numberized_input)
            ]).astype(dtype=np.int32),
        )
        workspace.FeedBlob(
            self.encoder_lengths,
            np.array([len(numberized_input)]).astype(dtype=np.int32),
        )
        workspace.FeedBlob(
            self.max_output_seq_len,
            np.array([max_output_seq_len]).astype(dtype=np.int64),
        )

        workspace.RunNet(self.model.net)

        num_steps = max_output_seq_len
        score_beam_list = workspace.FetchBlob(self.output_score_beam_list)
        token_beam_list = (
            workspace.FetchBlob(self.output_token_beam_list)
        )
        prev_index_beam_list = (
            workspace.FetchBlob(self.output_prev_index_beam_list)
        )

        attention_weights_beam_list = (
            workspace.FetchBlob(self.output_attention_weights_beam_list)
        )
        best_indices = (num_steps, 0)
        for i in range(num_steps + 1):
            for hyp_index in range(self.beam_size):
                if (
                    (
                        token_beam_list[i][hyp_index][0] ==
                        seq2seq_util.EOS_ID or
                        i == num_steps
                    ) and
                    (
                        score_beam_list[i][hyp_index][0] >
                        score_beam_list[best_indices[0]][best_indices[1]][0]
                    )
                ):
                    best_indices = (i, hyp_index)

        i, hyp_index = best_indices
        output = []
        attention_weights_per_token = []
        best_score = -score_beam_list[i][hyp_index][0]
        while i > 0:
            output.append(token_beam_list[i][hyp_index][0])
            attention_weights_per_token.append(
                attention_weights_beam_list[i][hyp_index]
            )
            hyp_index = prev_index_beam_list[i][hyp_index][0]
            i -= 1

        attention_weights_per_token = reversed(attention_weights_per_token)
        # encoder_inputs are reversed, see get_batch func
        attention_weights_per_token = [
            list(reversed(attention_weights))[:len(numberized_input)]
            for attention_weights in attention_weights_per_token
        ]
        output = list(reversed(output))
        return output, attention_weights_per_token, best_score


def run_seq2seq_beam_decoder(args, model_params, decoding_params):
    source_vocab = seq2seq_util.gen_vocab(
        args.source_corpus,
        args.unk_threshold,
    )
    logger.info('Source vocab size {}'.format(len(source_vocab)))
    target_vocab = seq2seq_util.gen_vocab(
        args.target_corpus,
        args.unk_threshold,
    )
    inversed_target_vocab = {v: k for (k, v) in viewitems(target_vocab)}
    logger.info('Target vocab size {}'.format(len(target_vocab)))

    decoder = Seq2SeqModelCaffe2EnsembleDecoder(
        translate_params=dict(
            ensemble_models=[dict(
                source_vocab=source_vocab,
                target_vocab=target_vocab,
                model_params=model_params,
                model_file=args.checkpoint,
            )],
            decoding_params=decoding_params,
        ),
    )
    decoder.load_models()

    for line in sys.stdin:
        numerized_source_sentence = seq2seq_util.get_numberized_sentence(
            line,
            source_vocab,
        )
        translation, alignment, _ = decoder.decode(
            numerized_source_sentence,
            2 * len(numerized_source_sentence) + 5,
        )
        print(' '.join([inversed_target_vocab[tid] for tid in translation]))


def main():
    parser = argparse.ArgumentParser(
        description='Caffe2: Seq2Seq Translation',
    )
    parser.add_argument('--source-corpus', type=str, default=None,
                        help='Path to source corpus in a text file format. Each '
                        'line in the file should contain a single sentence',
                        required=True)
    parser.add_argument('--target-corpus', type=str, default=None,
                        help='Path to target corpus in a text file format',
                        required=True)
    parser.add_argument('--unk-threshold', type=int, default=50,
                        help='Threshold frequency under which token becomes '
                        'labeled unknown token')

    parser.add_argument('--use-bidirectional-encoder', action='store_true',
                        help='Set flag to use bidirectional recurrent network '
                        'in encoder')
    parser.add_argument('--use-attention', action='store_true',
                        help='Set flag to use seq2seq with attention model')
    parser.add_argument('--encoder-cell-num-units', type=int, default=512,
                        help='Number of cell units per encoder layer')
    parser.add_argument('--encoder-num-layers', type=int, default=2,
                        help='Number encoder layers')
    parser.add_argument('--decoder-cell-num-units', type=int, default=512,
                        help='Number of cell units in the decoder layer')
    parser.add_argument('--decoder-num-layers', type=int, default=2,
                        help='Number decoder layers')
    parser.add_argument('--encoder-embedding-size', type=int, default=256,
                        help='Size of embedding in the encoder layer')
    parser.add_argument('--decoder-embedding-size', type=int, default=512,
                        help='Size of embedding in the decoder layer')
    parser.add_argument('--decoder-softmax-size', type=int, default=None,
                        help='Size of softmax layer in the decoder')

    parser.add_argument('--beam-size', type=int, default=6,
                        help='Size of beam for the decoder')
    parser.add_argument('--word-reward', type=float, default=0.0,
                        help='Reward per each word generated.')
    parser.add_argument('--unk-reward', type=float, default=0.0,
                        help='Reward per each UNK token generated. '
                        'Typically should be negative.')

    parser.add_argument('--checkpoint', type=str, default=None,
                        help='Path to checkpoint', required=True)

    args = parser.parse_args()

    encoder_layer_configs = [
        dict(
            num_units=args.encoder_cell_num_units,
        ),
    ] * args.encoder_num_layers

    if args.use_bidirectional_encoder:
        assert args.encoder_cell_num_units % 2 == 0
        encoder_layer_configs[0]['num_units'] /= 2

    decoder_layer_configs = [
        dict(
            num_units=args.decoder_cell_num_units,
        ),
    ] * args.decoder_num_layers

    run_seq2seq_beam_decoder(
        args,
        model_params=dict(
            attention=('regular' if args.use_attention else 'none'),
            decoder_layer_configs=decoder_layer_configs,
            encoder_type=dict(
                encoder_layer_configs=encoder_layer_configs,
                use_bidirectional_encoder=args.use_bidirectional_encoder,
            ),
            encoder_embedding_size=args.encoder_embedding_size,
            decoder_embedding_size=args.decoder_embedding_size,
            decoder_softmax_size=args.decoder_softmax_size,
        ),
        decoding_params=dict(
            beam_size=args.beam_size,
            word_reward=args.word_reward,
            unk_reward=args.unk_reward,
        ),
    )


if __name__ == '__main__':
    main()