1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
# Module caffe2.python.models.shufflenet
from caffe2.python import brew
"""
Utilitiy for creating ShuffleNet
"ShuffleNet V2: Practical Guidelines for EfficientCNN Architecture Design" by Ma et. al. 2018
"""
OUTPUT_CHANNELS = {
'0.5x': [24, 48, 96, 192, 1024],
'1.0x': [24, 116, 232, 464, 1024],
'1.5x': [24, 176, 352, 704, 1024],
'2.0x': [24, 244, 488, 976, 2048],
}
class ShuffleNetV2Builder():
def __init__(
self,
model,
data,
num_input_channels,
num_labels,
num_groups=2,
width='1.0x',
is_test=False,
detection=False,
bn_epsilon=1e-5,
):
self.model = model
self.prev_blob = data
self.num_input_channels = num_input_channels
self.num_labels = num_labels
self.num_groups = num_groups
self.output_channels = OUTPUT_CHANNELS[width]
self.stage_repeats = [3, 7, 3]
self.is_test = is_test
self.detection = detection
self.bn_epsilon = bn_epsilon
def create(self):
in_channels = self.output_channels[0]
self.prev_blob = brew.conv(self.model, self.prev_blob, 'stage1_conv',
self.num_input_channels, in_channels,
weight_init=("MSRAFill", {}),
kernel=3, stride=2)
self.prev_blob = brew.max_pool(self.model, self.prev_blob,
'stage1_pool', kernel=3, stride=2)
# adds stage#{2,3,4}; see table 5 of the ShufflenetV2 paper.
for idx, (out_channels, n_repeats) in enumerate(zip(
self.output_channels[1:4], self.stage_repeats
)):
prefix = 'stage{}_stride{}'.format(idx + 2, 2)
self.add_spatial_ds_unit(prefix, in_channels, out_channels)
in_channels = out_channels
for i in range(n_repeats):
prefix = 'stage{}_stride{}_repeat{}'.format(
idx + 2, 1, i + 1
)
self.add_basic_unit(prefix, in_channels)
self.last_conv = brew.conv(self.model, self.prev_blob, 'conv5',
in_channels, self.output_channels[4],
kernel=1)
self.avg_pool = self.model.AveragePool(self.last_conv, 'avg_pool',
kernel=7)
self.last_out = brew.fc(self.model,
self.avg_pool,
'last_out_L{}'.format(self.num_labels),
self.output_channels[4],
self.num_labels)
# spatial down sampling unit with stride=2
def add_spatial_ds_unit(self, prefix, in_channels, out_channels, stride=2):
right = left = self.prev_blob
out_channels = out_channels // 2
# Enlarge the receptive field for detection task
if self.detection:
left = self.add_detection_unit(left, prefix + '_left_detection',
in_channels, in_channels)
left = self.add_dwconv3x3_bn(left, prefix + 'left_dwconv',
in_channels, stride)
left = self.add_conv1x1_bn(left, prefix + '_left_conv1', in_channels,
out_channels)
if self.detection:
right = self.add_detection_unit(right, prefix + '_right_detection',
in_channels, in_channels)
right = self.add_conv1x1_bn(right, prefix + '_right_conv1',
in_channels, out_channels)
right = self.add_dwconv3x3_bn(right, prefix + '_right_dwconv',
out_channels, stride)
right = self.add_conv1x1_bn(right, prefix + '_right_conv2',
out_channels, out_channels)
self.prev_blob = brew.concat(self.model, [right, left],
prefix + '_concat')
self.prev_blob = self.model.net.ChannelShuffle(
self.prev_blob, prefix + '_ch_shuffle',
group=self.num_groups, kernel=1
)
# basic unit with stride=1
def add_basic_unit(self, prefix, in_channels, stride=1):
in_channels = in_channels // 2
left = prefix + '_left'
right = prefix + '_right'
self.model.net.Split(self.prev_blob, [left, right])
if self.detection:
right = self.add_detection_unit(right, prefix + '_right_detection',
in_channels, in_channels)
right = self.add_conv1x1_bn(right, prefix + '_right_conv1',
in_channels, in_channels)
right = self.add_dwconv3x3_bn(right, prefix + '_right_dwconv',
in_channels, stride)
right = self.add_conv1x1_bn(right, prefix + '_right_conv2',
in_channels, in_channels)
self.prev_blob = brew.concat(self.model, [right, left],
prefix + '_concat')
self.prev_blob = self.model.net.ChannelShuffle(
self.prev_blob, prefix + '_ch_shuffle',
group=self.num_groups, kernel=1
)
# helper functions to create net's units
def add_detection_unit(self, prev_blob, prefix, in_channels, out_channels,
kernel=3, pad=1):
out_blob = brew.conv(self.model, prev_blob, prefix + '_conv',
in_channels, out_channels, kernel=kernel,
weight_init=("MSRAFill", {}),
group=in_channels, pad=pad)
out_blob = brew.spatial_bn(self.model, out_blob, prefix + '_bn',
out_channels, epsilon=self.bn_epsilon,
is_test=self.is_test)
return out_blob
def add_conv1x1_bn(self, prev_blob, blob, in_channels, out_channels):
prev_blob = brew.conv(self.model, prev_blob, blob, in_channels,
out_channels, kernel=1,
weight_init=("MSRAFill", {}))
prev_blob = brew.spatial_bn(self.model, prev_blob, prev_blob + '_bn',
out_channels,
epsilon=self.bn_epsilon,
is_test=self.is_test)
prev_blob = brew.relu(self.model, prev_blob, prev_blob)
return prev_blob
def add_dwconv3x3_bn(self, prev_blob, blob, channels, stride):
prev_blob = brew.conv(self.model, prev_blob, blob, channels,
channels, kernel=3,
weight_init=("MSRAFill", {}),
stride=stride, group=channels, pad=1)
prev_blob = brew.spatial_bn(self.model, prev_blob,
prev_blob + '_bn',
channels,
epsilon=self.bn_epsilon,
is_test=self.is_test)
return prev_blob
def create_shufflenet(
model,
data,
num_input_channels,
num_labels,
label=None,
is_test=False,
no_loss=False,
):
builder = ShuffleNetV2Builder(model, data, num_input_channels,
num_labels,
is_test=is_test)
builder.create()
if no_loss:
return builder.last_out
if (label is not None):
(softmax, loss) = model.SoftmaxWithLoss(
[builder.last_out, label],
["softmax", "loss"],
)
return (softmax, loss)
|